Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla

Understanding the visual pathways of the fly's compound eye has been blocked for decades at the second optic neuropil, the medulla, a two‐part relay comprising 10 strata (M1–M10), and the largest neuropil in the fly's brain. Based on the modularity of its composition, and two previous reports, on Golgi‐impregnated cell types (Fischbach and Dittrich, Cell Tissue Res., 1989 ; 258:441–475) and their synaptic circuits in the first neuropil, the lamina, we used serial‐section electron microscopy to examine inputs to the distal strata M1–M6. We report the morphology of the reconstructed medulla terminals of five lamina cells, L1–L5, two photoreceptors, R7 and R8, and three neurons, medulla cell T1 and centrifugal cells C2 and C3. The morphology of these conforms closely to previous reports from Golgi impregnation. This fidelity provides assurance that our reconstructions are complete and accurate. Synapses of these terminals broadly localize to the terminal and provide contacts to unidentified targets, mostly medulla cells, as well as sites of connection between the terminals themselves. These reveal that R8 forms contacts upon R7 and thus between these two spectral inputs; that L3 provides input upon both pathways, adding an achromatic input; that the terminal of L5 reciprocally connects to that of L1, thus being synaptic in the medulla despite lacking synapses in the lamina; that the motion‐sensing input cells L1 and L2 lack direct interconnection but both receive input from C2 and C3, resembling lamina connections of these cells; and that, as in the lamina, T1 provides no output chemical synapses. J. Comp. Neurol. 509:493–513, 2008. © 2008 Wiley‐Liss, Inc.

[1]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[2]  M. Abercrombie Estimation of nuclear population from microtome sections , 1946, The Anatomical record.

[3]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[4]  D BODIAN,et al.  The generalized vertebrate neuron. , 1962, Science.

[5]  RETINA , 1965 .

[6]  O. Trujillo-Cenóz Some aspects of the structural organization of the intermediate retina of dipterans. , 1965, Journal of ultrastructure research.

[7]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  V. Braitenberg,et al.  [Order and orientation of elements in the visual system of the fly]. , 1970, Kybernetik.

[9]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[11]  N. J. Strausfeld,et al.  Some Interrelationships between the First and Second Synaptic Regions of the Fly’s (Musca domestica L.) Visual System , 1972 .

[12]  N. Strausfeld,et al.  Columns and Layers in the Second Synaptic Region of the Fly’s Visual System: The Case for Two Superimposed Neuronal Architectures , 1972 .

[13]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[14]  S. Benzer,et al.  Development of the Drosophila retina, a neurocrystalline lattice. , 1976, Developmental biology.

[15]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[16]  C. Nicholson Electric current flow in excitable cells J. J. B. Jack, D. Noble &R. W. Tsien Clarendon Press, Oxford (1975). 502 pp., £18.00 , 1976, Neuroscience.

[17]  I A Meinertzhagen,et al.  The organization of perpendicular fibre pathways in the insect optic lobe. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  N. Strausfeld,et al.  Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.

[19]  I A Meinertzhagen,et al.  An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly , 1982, The Journal of comparative neurology.

[20]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[21]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[22]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[23]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[24]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  R. Hardie Neurotransmitters in Compound Eyes , 1989 .

[26]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[27]  P Sterling,et al.  Demonstration of cell types among cone bipolar neurons of cat retina. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[29]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[30]  W Rall,et al.  Matching dendritic neuron models to experimental data. , 1992, Physiological reviews.

[31]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[32]  N. Troje,et al.  Spectral Categories in the Learning Behaviour of Blowflies , 1993 .

[33]  B. Atchison,et al.  [26] Direct chemiluminescent sequencing of double-stranded PCR products , 1995 .

[34]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  T. Kitamoto,et al.  Immunocytochemical study of choline acetyltransferase in Drosophila melanogaster: An analysis of cis‐regulatory regions controlling expression in the brain of cDNA‐transformed flies , 1995, The Journal of comparative neurology.

[36]  I. Meinertzhagen,et al.  Ultrastructure and quantification of synapses in the insect nervous system , 1996, Journal of Neuroscience Methods.

[37]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[38]  N. Grant,et al.  Are exocytosis mechanisms neurotransmitter specific? , 1997, Neurochemistry International.

[39]  Franck Pichaud,et al.  Evolution of color vision , 1999, Current Opinion in Neurobiology.

[40]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[41]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[42]  A. Huber,et al.  Patterning of the R7 and R8 photoreceptor cells of Drosophila: evidence for induced and default cell-fate specification. , 1999, Development.

[43]  R H Masland,et al.  Confronting complexity: strategies for understanding the microcircuitry of the retina. , 2000, Annual review of neuroscience.

[44]  Alexander Borst,et al.  Models of motion detection , 2000, Nature Neuroscience.

[45]  I. Meinertzhagen,et al.  Synaptic organization in the fly's optic lamina: few cells, many synapses and divergent microcircuits. , 2001, Progress in brain research.

[46]  C. Desplan,et al.  Photoreceptor subtype specification: from flies to humans. , 2001, Seminars in cell & developmental biology.

[47]  I. Meinertzhagen Plasticity in the insect nervous system , 2001 .

[48]  Kristen M. Harris,et al.  Synthesis of Research: Extending Unbiased Stereology of Brain Ultrastructure to Three-dimensional Volumes , 2001, J. Am. Medical Informatics Assoc..

[49]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[50]  Michael T. Mader,et al.  The Drosophila Standard Brain , 2002, Current Biology.

[51]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[52]  Jane Anne Horne,et al.  Endophilin Promotes a Late Step in Endocytosis at Glial Invaginations in Drosophila Photoreceptor Terminals , 2003, The Journal of Neuroscience.

[53]  N. Strausfeld,et al.  Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa , 2003, The Journal of comparative neurology.

[54]  Thomas Labhart,et al.  Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors , 2003, Cell.

[55]  S. D. Carlson,et al.  Ultrastructure of capitate projections in the optic neuropil of Diptera , 2004, Cell and Tissue Research.

[56]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[57]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[58]  W. Oertel,et al.  Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster , 1988, Cell and Tissue Research.

[59]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[60]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[61]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[62]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[63]  V. Braitenberg,et al.  A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.

[64]  Claude Desplan,et al.  Building a projection map for photoreceptor neurons in the Drosophila optic lobes. , 2004, Seminars in cell & developmental biology.

[65]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[66]  K. Kirschfeld,et al.  Ultraviolet sensitivity of fly photoreceptors R7 and R8: Evidence for a sensitising function , 1983, Biophysics of structure and mechanism.

[67]  R. Masland Neuronal cell types , 2004, Current Biology.

[68]  A. Hofbauer,et al.  Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster , 1991, Cell and Tissue Research.

[69]  V. Braitenberg,et al.  Patterns of projection in the visual system of the fly II. Quantitative aspects of second order neurons in relation to models of movement perception , 2004, Experimental Brain Research.

[70]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[71]  K. Fischbach,et al.  Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli , 1992, Cell and Tissue Research.

[72]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[73]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[74]  L. Sternberger,et al.  Fluorescence of Photoreceptor Cells Observed in vivo , 2005 .

[75]  I. Meinertzhagen,et al.  Histamine compartments of the Drosophila brain with an estimate of the quantum content at the photoreceptor synapse. , 2005, Journal of neurophysiology.

[76]  Roger C. Hardie,et al.  Feedback Network Controls Photoreceptor Output at the Layer of First Visual Synapses in Drosophila , 2006, The Journal of general physiology.

[77]  Shin-ya Takemura,et al.  Ommatidial type‐specific interphotoreceptor connections in the lamina of the swallowtail butterfly, Papilio xuthus , 2006, The Journal of comparative neurology.

[78]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[79]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[80]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[81]  M. Vorobyev,et al.  Tetrachromacy in a butterfly that has eight varieties of spectral receptors , 2008, Proceedings of the Royal Society B: Biological Sciences.

[82]  Ian A. Meinertzhagen,et al.  Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System , 2008, PloS one.