Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification

This paper presents a new, dictionary-based method for hyperspectral image classification, which incorporates both spectral and contextual characteristics of a sample clustered to obtain a dictionary of each pixel. The resulting pixels display a common sparsity pattern in identical clustered groups. We calculated the image’s sparse coefficients using the dictionary approach, which generated the sparse representation features of the remote sensing images. The sparse coefficients are then used to classify the hyperspectral images via a linear SVM. Experiments show that our proposed method of dictionary-based, clustered sparse coefficients can create better representations of hyperspectral images, with a greater overall accuracy and a Kappa coefficient.

[1]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[2]  R. Keith Robinson,et al.  Hyperspectral Imaging on the International Space Station: An Innovative Approach to Commercial Development of Space , 2004 .

[3]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[4]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[5]  Antonio J. Plaza,et al.  Dictionary pruning in sparse unmixing of hyperspectral data , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[6]  Song Xiang-fa,et al.  Classification of Hyperspectral Remote Sensing Image Based on Sparse Representation and Spectral Information , 2012 .

[7]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[8]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[9]  Hamid R. Rabiee,et al.  Spatial-Aware Dictionary Learning for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[10]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[11]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[12]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[14]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[15]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[16]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .