Coherent optical non-reciprocity in axisymmetric resonators.

We describe an approach to optical non-reciprocity that exploits the local helicity of evanescent electric fields in axisymmetric resonators. By interfacing an optical cavity to helicity-sensitive transitions, such as Zeeman levels in a quantum dot, light transmission through a waveguide becomes direction-dependent when the state degeneracy is lifted. Using a linearized quantum master equation, we analyze the configurations that exhibit non-reciprocity, and we show that reasonable parameters from existing cavity QED experiments are sufficient to demonstrate a coherent non-reciprocal optical isolator operating at the level of a single photon.

[1]  Christian Junge,et al.  Strong coupling between single atoms and non-transversal photons , 2013 .

[2]  Mohammad Hafezi,et al.  Robust optical delay lines with topological protection , 2011, 1102.3256.

[3]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[4]  H. Kimble,et al.  A state-insensitive, compensated nanofiber trap , 2011, 1110.5372.

[5]  A. Forchel,et al.  Zeeman splitting of excitons and biexcitons in single In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 1998 .

[6]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[7]  H. J. Kimble,et al.  Strong interactions of single atoms and photons near a dielectric boundary , 2010, 1011.0740.

[8]  He-ping Zhao,et al.  Coupling to a microdisk cavity containing a three-level quantum-dot with two orthogonal modes , 2011 .

[9]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[10]  Yuecheng Shen,et al.  Single-photon diode by exploiting the photon polarization in a waveguide. , 2011, Physical review letters.

[11]  Shanhui Fan,et al.  Nonlinear photonic crystal microdevices for optical integration. , 2003, Optics letters.

[12]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[13]  U. Banin,et al.  Cavity QED with semiconductor nanocrystals. , 2006, Nano letters.

[14]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[15]  Paul I. Archer,et al.  Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots , 2009, Science.

[16]  B. M. Norman,et al.  Electron spin polarization-based integrated photonic devices. , 2011, Optics express.

[17]  R. J. Potton,et al.  Reciprocity in optics , 2004 .

[18]  H. Kimble,et al.  Demonstration of a state-insensitive, compensated nanofiber trap. , 2012, Physical review letters.

[19]  J. Bowers,et al.  Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. , 2011, Optics express.

[20]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[21]  J. Rarity,et al.  Photonic quantum technologies , 2013 .

[22]  Michal Lipson,et al.  Optical nonreciprocity in optomechanical structures. , 2009, Physical review letters.

[23]  K. Vahala Optical microcavities , 2003, Nature.

[24]  O. Painter,et al.  Mode coupling and cavity–quantum-dot interactions in a fiber-coupled microdisk cavity , 2006, quant-ph/0606142.

[25]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[26]  Mark Oxborrow,et al.  How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL , 2007, SPIE LASE.

[27]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[28]  Jens Koch,et al.  Time-reversal-symmetry breaking in circuit-QED-based photon lattices , 2010, 1006.0762.

[29]  Daniel C. Kilper,et al.  Energy Challenges in Current and Future Optical Transmission Networks , 2012, Proceedings of the IEEE.

[30]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[31]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[32]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[33]  R. Viswanatha,et al.  Long-lived photoinduced magnetization in copper-doped ZnSe-CdSe core-shell nanocrystals. , 2012, Nature nanotechnology.

[34]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[35]  M. Furis,et al.  Anomalous circular polarization of photoluminescence spectra of individual CdSe nanocrystals in an applied magnetic field. , 2009, Physical review letters.

[36]  Optomechanically induced non-reciprocity in microring resonators. , 2011, Optics express.

[37]  Zongfu Yu,et al.  Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit” , 2012, Science.

[38]  Yi Xuan,et al.  An All-Silicon Passive Optical Diode , 2012, Science.

[39]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[40]  Paul I. Archer,et al.  Mn2+‐Doped CdSe Quantum Dots: New Inorganic Materials for Spin‐Electronics and Spin‐Photonics , 2008 .

[41]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[42]  Shanhui Fan,et al.  Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom , 2009 .

[43]  Yeshaiahu Fainman,et al.  Nonreciprocal Light Propagation in a Silicon Photonic Circuit , 2011, Science.