Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches

[1]  J. Moreno,et al.  Remote sensing of sun‐induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP) , 2010 .

[2]  A. Huete,et al.  Estimation of vegetation photosynthetic capacity from space‐based measurements of chlorophyll fluorescence for terrestrial biosphere models , 2014, Global change biology.

[3]  M. Rossini,et al.  Leaf level early assessment of ozone injuries by passive fluorescence and photochemical reflectance index , 2008 .

[4]  C. Frankenberg,et al.  Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4 , 2015, Global change biology.

[5]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[6]  M. Trnka,et al.  Climate Change Impacts and Adaptation Strategies in Spring Barley Production in the Czech Republic , 2004 .

[7]  S. Long,et al.  Canopy structure and light interception , 1993 .

[8]  W. Verhoef,et al.  Remote sensing data assimilation using coupled radiative transfer models , 2003 .

[9]  James A. Gardner,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Asia-Pacific Remote Sensing.

[10]  Liangyun Liu,et al.  Detection of Vegetation Light-Use Efficiency Based on Solar-Induced Chlorophyll Fluorescence Separated From Canopy Radiance Spectrum , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  John R. Miller,et al.  Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection , 2009 .

[12]  L. Gómez-Chova,et al.  Developments for vegetation fluorescence retrieval from spaceborne high‐resolution spectrometry in the O2‐A and O2‐B absorption bands , 2010 .

[13]  M. Rossini,et al.  High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field , 2010 .

[14]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[15]  J. Berry,et al.  Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence , 2014, Journal of geophysical research. Biogeosciences.

[16]  Marc L. Imhoff,et al.  Global patterns in human consumption of net primary production , 2004, Nature.

[17]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[18]  S. Wright,et al.  Biodiversity Meets the Atmosphere: A Global View of Forest Canopies , 2003, Science.

[19]  D. W. Stewart,et al.  Canopy structure, light interception, and photosynthesis in maize , 2003 .

[20]  S. Goetz,et al.  Modelling Terrestrial Carbon Exchange and Storage: Evidence and Implications of Functional Convergence in Light-use Efficiency , 1999 .

[21]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[22]  Ü. Rannik,et al.  Gap filling strategies for defensible annual sums of net ecosystem exchange , 2001 .

[23]  R. Colombo,et al.  Red and far red Sun‐induced chlorophyll fluorescence as a measure of plant photosynthesis , 2015 .

[24]  Luis Alonso,et al.  CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. , 2009 .

[25]  Luis Alonso,et al.  Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification , 2008, IEEE Geoscience and Remote Sensing Letters.

[26]  T. A. Black,et al.  The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements. , 2008, The Science of the total environment.

[27]  N. Baker Chlorophyll fluorescence: a probe of photosynthesis in vivo. , 2008, Annual review of plant biology.

[28]  S. Verma,et al.  Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption , 2002 .

[29]  C. Frankenberg,et al.  Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2 , 2013 .

[30]  M. Rossini,et al.  Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest , 2015 .

[31]  W. Cohen,et al.  Site‐level evaluation of satellite‐based global terrestrial gross primary production and net primary production monitoring , 2005 .

[32]  P. Zarco-Tejada,et al.  Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance , 2013 .

[33]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[34]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[35]  T. D. Mitchell,et al.  Ecosystem Service Supply and Vulnerability to Global Change in Europe , 2005, Science.

[36]  Bo-Cai Gao,et al.  Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll $(\hbox{fAPAR}_{\rm chl})$ and Leaf Water Content (LWC) , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Ü. Niinemets,et al.  Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees , 2003 .

[38]  L. Alonso,et al.  Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery , 2005 .

[39]  M. Rossini,et al.  Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features. , 2010, Applied optics.

[40]  B. Demmig‐Adams,et al.  Survey of Thermal Energy Dissipation and Pigment Composition in Sun and Shade Leaves , 1998 .

[41]  Pete Falloon,et al.  Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach. , 2010, The Science of the total environment.

[42]  Pablo J. Zarco-Tejada,et al.  Assessing structural effects on PRI for stress detection in conifer forests , 2011 .

[43]  Qing Xiao,et al.  Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Lawrence A. Corp,et al.  Integrating Solar Induced Fluorescence and the Photochemical Reflectance Index for Estimating Gross Primary Production in a Cornfield , 2013, Remote. Sens..

[45]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[46]  A. Gitelson,et al.  The need for a common basis for defining light-use efficiency: Implications for productivity estimation , 2015 .

[47]  Luis Alonso,et al.  Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications , 2009 .

[48]  C. Frankenberg,et al.  Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. , 2014, Journal of experimental botany.

[49]  Andreas Hueni,et al.  APEX - current status, performance and validation concept , 2010, 2010 IEEE Sensors.

[50]  Chaoyang Wu,et al.  Revised photochemical reflectance index (PRI) for predicting light use efficiency of wheat in a growth cycle: validation and comparison , 2010 .

[51]  D. Baldocchi,et al.  CO2 fluxes over plant canopies and solar radiation: a review , 1995 .

[52]  Stefan Adriaensen,et al.  Structure, Components, and Interfaces of the Airborne Prism Experiment (APEX) Processing and Archiving Facility , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[53]  J. Fuhrer,et al.  The carbon budget of newly established temperate grassland depends on management intensity , 2007 .

[54]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[55]  Hans Peter Schmid,et al.  A Three-Dimensional Backward Lagrangian Footprint Model For A Wide Range Of Boundary-Layer Stratifications , 2002 .

[56]  W. Verhoef,et al.  Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data , 2015 .

[57]  N. Buchmann,et al.  Methodical study of nitrous oxide eddy covariance measurements using quantum cascade laser spectrometery over a Swiss forest , 2007 .

[58]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[59]  E. K. Webb,et al.  Correction of flux measurements for density effects due to heat and water vapour transfer , 1980 .

[60]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[61]  Thomas Hilker,et al.  Tracking plant physiological properties from multi-angular tower-based remote sensing , 2011, Oecologia.

[62]  Govindjee,et al.  Chlorophyll a Fluorescence: A Bit of Basics and History , 2004 .

[63]  N. Kljun,et al.  Evaluation of Lagrangian footprint model using data from wind tunnel convective boundary layer , 2004 .

[64]  Damiano Gianelle,et al.  SpecNet revisited: bridging flux and remote sensing communities , 2010 .

[65]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[66]  Jonas Ardö,et al.  Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems , 2010 .

[67]  D. Baldocchi Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future , 2003 .

[68]  Josep Peñuelas,et al.  Photosynthetic light use efficiency from satellite sensors: From global to Mediterranean vegetation , 2014 .

[69]  M Schaepman,et al.  Impacts of dichroic prism coatings on radiometry of the airborne imaging spectrometer APEX. , 2014, Applied optics.

[70]  Thomas Hilker,et al.  An assessment of photosynthetic light use efficiency from space: Modeling the atmospheric and directional impacts on PRI reflectance , 2009 .

[71]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[72]  P. North,et al.  Remote sensing of canopy light use efficiency using the photochemical reflectance index , 2001 .

[73]  W. Verhoef,et al.  Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence , 2011 .

[74]  L. Gómez-Chova,et al.  Estimation of solar‐induced vegetation fluorescence from space measurements , 2007 .

[75]  Philip Lewis,et al.  Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements , 2012 .

[76]  M. Schaepman,et al.  FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data , 2014 .

[77]  M. S. Moran,et al.  Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence , 2014, Proceedings of the National Academy of Sciences.

[78]  K. Itten,et al.  Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX) , 2015 .

[79]  John A. Gamon,et al.  Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles , 2012 .

[80]  S. W. Maier,et al.  Sun-induced fluorescence: A new tool for precision farming , 2003 .

[81]  M. Schaepman,et al.  Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data , 2014 .

[82]  C. Frankenberg,et al.  Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space , 2013 .

[83]  Peter Gege,et al.  Calibration facility for airborne imaging spectrometers , 2005 .

[84]  Philip Lewis,et al.  Spectral invariants and scattering across multiple scales from within-leaf to canopy , 2007 .

[85]  Elizabeth M. Middleton,et al.  Variations of Foliage Chlorophyll fAPAR and Foliage Non-Chlorophyll fAPAR (fAPAR$_{\rm chl}$, fAPAR$_{\rm non\mathchar "702D chl}$) at the Harvard Forest , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[86]  Elizabeth M. Middleton,et al.  Regional mapping of gross light-use efficiency using MODIS spectral indices , 2008 .

[87]  Ismael Moya,et al.  Effect of canopy structure on sun-induced chlorophyll fluorescence , 2012 .

[88]  T. Foken,et al.  Tools for quality assessment of surface-based flux measurements , 1996 .

[89]  Helmut Haberl,et al.  Global human appropriation of net primary production doubled in the 20th century , 2013, Proceedings of the National Academy of Sciences.

[90]  Emmett W. Chappelle,et al.  Optical and fluorescence properties of corn leaves from different nitrogen regimes , 2003, SPIE Remote Sensing.

[91]  Philip Lewis,et al.  Hyperspectral remote sensing of foliar nitrogen content , 2012, Proceedings of the National Academy of Sciences.

[92]  Andrew E. Suyker,et al.  Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems , 2015 .

[93]  Andreas Hueni,et al.  Airborne Prism Experiment Calibration Information System , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[94]  Thomas Foken,et al.  Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software , 2007 .

[95]  Walter Senn,et al.  A cospectral correction model for measurement of turbulent NO2 flux , 1995 .

[96]  Daniel Schläpfer,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification , 2002 .

[97]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[98]  Wout Verhoef,et al.  A model for chlorophyll fluorescence and photosynthesis at leaf scale , 2009 .

[99]  Daniel Schläpfer,et al.  Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization. , 2011, Applied optics.

[100]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[101]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[102]  Petra D'Odorico,et al.  In-flight spectral performance monitoring of the Airborne Prism Experiment. , 2010, Applied optics.

[103]  Dylan B. A. Jones,et al.  Terrestrial gross primary production inferred from satellite fluorescence and vegetation models , 2014, Global change biology.

[104]  A. Arneth,et al.  Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation , 2010 .

[105]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[106]  J. A. Plascyk The MK II Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar-Stimulated Luminescence , 1975 .

[107]  J. Calpe,et al.  Evaluation of remote sensing of vegetation fluorescence by the analysis of diurnal cycles , 2008 .

[108]  Veroslav Kaplan,et al.  Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles. , 2013, Journal of experimental botany.

[109]  P. Cox,et al.  Observing terrestrial ecosystems and the carbon cycle from space , 2015, Global change biology.

[110]  Natascha Kljun,et al.  Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. , 2009 .

[111]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[112]  W. Verhoef,et al.  A Bayesian object based approach for estimating vegetation biophysical and biochemical variables from APEX at sensor radiance data , 2013 .

[113]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .