The Coding and Noncoding Architecture of the Caulobacter crescentus Genome

Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.

[1]  Yves V. Brun,et al.  Getting in the Loop: Regulation of Development in Caulobacter crescentus , 2010, Microbiology and Molecular Biology Reviews.

[2]  R. Bock,et al.  Local Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-Binding Sites , 2011, PLoS genetics.

[3]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[4]  Marco Y. Hein,et al.  Decoding Human Cytomegalovirus , 2012, Science.

[5]  A. Ninfa,et al.  Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus , 1997, Journal of bacteriology.

[6]  Patrick T. McGrath,et al.  Small non‐coding RNAs in Caulobacter crescentus , 2008, Molecular microbiology.

[7]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[8]  H. D. de Boer,et al.  Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Giegerich,et al.  Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti1021 , 2013, BMC Genomics.

[10]  Y. Shimizu,et al.  Evidence for the Translation Initiation of Leaderless mRNAs by the Intact 70 S Ribosome without Its Dissociation into Subunits in Eubacteria* , 2004, Journal of Biological Chemistry.

[11]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[12]  E. Winzeler,et al.  Translation of the leaderless Caulobacter dnaX mRNA , 1997, Journal of bacteriology.

[13]  D. Dunn,et al.  Reading frame switch caused by base‐pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. , 1988, The EMBO journal.

[14]  Pascale Cossart,et al.  Comparative transcriptomics of pathogenic and non-pathogenic Listeria species , 2012, Molecular systems biology.

[15]  Honglak Lee,et al.  High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons , 2007, Nature Biotechnology.

[16]  O. Sliusarenko,et al.  High‐throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio‐temporal dynamics , 2011, Molecular microbiology.

[17]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[18]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[19]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[20]  G. Storz,et al.  An expanding universe of small proteins. , 2011, Current opinion in microbiology.

[21]  L. Shapiro,et al.  A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus , 2007, Nucleic acids research.

[22]  Najaf A. Shah,et al.  Broad-Specificity mRNA–rRNA Complementarity in Efficient Protein Translation , 2012, PLoS genetics.

[23]  Enrique Merino,et al.  ProOpDB: Prokaryotic Operon DataBase , 2011, Nucleic Acids Res..

[24]  W. Szer,et al.  Interaction of Escherichia coli 30S ribosomal subunits with MS2 phage RNA in the absence of initiation factors. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Steitz,et al.  How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Shapiro,et al.  CrfA, a Small Noncoding RNA Regulator of Adaptation to Carbon Starvation in Caulobacter crescentus , 2010, Journal of bacteriology.

[27]  Pimlapas Leekitcharoenphon,et al.  The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium , 2012, Proceedings of the National Academy of Sciences.

[28]  Alison K. Hottes,et al.  Transcriptional Profiling of Caulobacter crescentus during Growth on Complex and Minimal Media , 2004, Journal of bacteriology.

[29]  P. Porras,et al.  One Single In-frame AUG Codon Is Responsible for a Diversity of Subcellular Localizations of Glutaredoxin 2 in Saccharomyces cerevisiae* , 2006, Journal of Biological Chemistry.

[30]  M Bjerknes,et al.  Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. , 1994, Nucleic acids research.

[31]  Isabella Moll,et al.  Selective Translation of Leaderless mRNAs by Specialized Ribosomes Generated by MazF in Escherichia coli , 2011, Cell.

[32]  K. Keiler,et al.  Correct Timing of dnaA Transcription and Initiation of DNA Replication Requires trans Translation , 2009, Journal of bacteriology.

[33]  H. McAdams,et al.  The architecture and conservation pattern of whole-cell control circuitry. , 2011, Journal of molecular biology.

[34]  Olga T. Schubert,et al.  Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis , 2014, Cell Reports.

[35]  J. Elf,et al.  Selective Charging of tRNA Isoacceptors Explains Patterns of Codon Usage , 2003, Science.

[36]  Zoya Ignatova,et al.  Transient ribosomal attenuation coordinates protein synthesis and co-translational folding , 2009, Nature Structural &Molecular Biology.

[37]  O. MacDougald,et al.  A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Karlin,et al.  Correlations between Shine-Dalgarno Sequences and Gene Features Such as Predicted Expression Levels and Operon Structures , 2002, Journal of bacteriology.

[39]  H. McAdams,et al.  Regulatory Response to Carbon Starvation in Caulobacter crescentus , 2011, PloS one.

[40]  B. Palsson,et al.  Structural and operational complexity of the Geobacter sulfurreducens genome. , 2010, Genome research.

[41]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[42]  Jeffrey M. Skerker,et al.  Identification and cell cycle control of a novel pilus system in Caulobacter crescentus , 2000, The EMBO journal.

[43]  E. O’Shea,et al.  A serine sensor for multicellularity in a bacterium , 2013, eLife.

[44]  Y. Brun,et al.  Cell cycle‐dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus , 2004, Molecular microbiology.

[45]  Luis R Comolli,et al.  Oligomerization and higher‐order assembly contribute to sub‐cellular localization of a bacterial scaffold , 2013, Molecular microbiology.

[46]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[47]  B. Ely,et al.  Principal sigma subunit of the Caulobacter crescentus RNA polymerase , 1995, Journal of bacteriology.

[48]  Joshua W. Modell,et al.  A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. , 2011, Genes & development.

[49]  Mladen A. Vouk,et al.  Predicting Shine–Dalgarno Sequence Locations Exposes Genome Annotation Errors , 2006, PLoS Comput. Biol..

[50]  Pohl Milón,et al.  Kinetic control of translation initiation in bacteria , 2012, Critical reviews in biochemistry and molecular biology.

[51]  M. Østerås,et al.  Identification of the Protease and the Turnover Signal Responsible for Cell Cycle-Dependent Degradation of the Caulobacter FliF Motor Protein , 2004, Journal of bacteriology.

[52]  B. Ely,et al.  Regulation of Caulobacter crescentus ilvBN gene expression , 1994, Journal of bacteriology.

[53]  Eduardo Abeliuk,et al.  Assembly of the Caulobacter cell division machine , 2011, Molecular microbiology.

[54]  Eduardo Abeliuk,et al.  The essential genome of a bacterium , 2011, Molecular systems biology.

[55]  S Kobayashi,et al.  Small Peptides Switch the Transcriptional Activity of Shavenbaby During Drosophila Embryogenesis , 2010, Science.

[56]  C. Gualerzi,et al.  Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation , 2000, The EMBO journal.

[57]  J. Vogel,et al.  An atlas of Hfq‐bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs , 2012, The EMBO journal.

[58]  J. Vogel,et al.  Hfq and its constellation of RNA , 2011, Nature Reviews Microbiology.

[59]  G. Janssen,et al.  Leaderless mRNAs Bind 70S Ribosomes More Strongly than 30S Ribosomal Subunits in Escherichia coli , 2002, Journal of bacteriology.

[60]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[61]  W. Szer,et al.  Purification and properties of initiation factor IF-3 from Caulobacter crescentus. , 1974, The Journal of biological chemistry.

[62]  Robert D. Finn,et al.  Rfam: Wikipedia, clans and the “decimal” release , 2010, Nucleic Acids Res..

[63]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. Yanofsky Attenuation in the control of expression of bacterial operons , 1981, Nature.

[65]  Najaf A. Shah,et al.  Evidence for context-dependent complementarity of non-Shine-Dalgarno ribosome binding sites to Escherichia coli rRNA. , 2013, ACS chemical biology.

[66]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[67]  Michael T. Laub,et al.  Regulation of the bacterial cell cycle by an integrated genetic circuit , 2006, Nature.

[68]  Saman Halgamuge,et al.  Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. , 2006, Gene.

[69]  L. Shapiro,et al.  ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division , 2014, Molecular microbiology.

[70]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[71]  Temple F. Smith,et al.  Operons in Escherichia coli: genomic analyses and predictions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[73]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[74]  T. Gojobori,et al.  Dynamic evolution of translation initiation mechanisms in prokaryotes , 2010, Proceedings of the National Academy of Sciences.

[75]  G. Storz,et al.  Bacterial small RNA regulators: versatile roles and rapidly evolving variations. , 2011, Cold Spring Harbor perspectives in biology.

[76]  Z. She,et al.  Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes , 2011, BMC Genomics.

[77]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[78]  Jeffrey W. Roberts,et al.  High-resolution view of bacteriophage lambda gene expression by ribosome profiling , 2013, Proceedings of the National Academy of Sciences.

[79]  Greg L. Hersch,et al.  Sculpting the Proteome with AAA+ Proteases and Disassembly Machines , 2004, Cell.