A Phase Field Model for Continuous Clustering on Vector Fields

A new method for the simplification of flow fields is presented. It is based on continuous clustering. A well-known physical clustering model, the Cahn-Hilliard (1958) model, which describes phase separation, is modified to reflect the properties of the data to be visualized. Clusters are defined implicitly as connected components of the positivity set of a density function. An evolution equation for this function is obtained as a suitable gradient flow of an underlying anisotropic energy functional, where time serves as the scale parameter. The evolution is characterized by a successive coarsening of patterns, during which the underlying simulation data specifies preferable pattern boundaries. We introduce specific physical quantities in the simulation to control the shape, orientation and distribution of the clusters as a function of the underlying flow field. In addition, the model is expanded, involving elastic effects. In the early stages of the evolution, a shear-layer-type representation of the flow field can thereby be generated, whereas, for later stages, the distribution of clusters can be influenced. Furthermore, we incorporate upwind ideas to give the clusters an oriented drop-shaped appearance. We discuss the applicability of this new type of approach mainly for flow fields, where the cluster energy penalizes cross-streamline boundaries. However, the method also carries provisions for other fields as well. The clusters can be displayed directly as a flow texture. Alternatively, the clusters can be visualized by iconic representations, which are positioned by using a skeletonization algorithm.

[1]  Nelson L. Max,et al.  Direct volume visualization of three-dimensional vector fields , 1992, VVS.

[2]  Jarke J. van Wijk Implicit Stream Surfaces , 1993, IEEE Visualization.

[3]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[4]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[5]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[6]  Peter Hastreiter,et al.  Interactive exploration of volume line integral convolution based on 3D-texture mapping , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[7]  Harald Garcke,et al.  The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies , 2001 .

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  K. Fujiwara Eigenvalues of Laplacians on a closed Riemannian manifold and its nets , 1995 .

[11]  Alexandru Telea,et al.  Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[12]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[13]  Rüdiger Westermann,et al.  A level-set method for flow visualization , 2000 .

[14]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[15]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[16]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[17]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[20]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[21]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[22]  Harald Garcke,et al.  A continuous clustering method for vector fields , 2000 .

[23]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 2000, J. Vis. Commun. Image Represent..

[24]  Jarke J. van Wijk,et al.  Enhanced Spot Noise for Vector Field Visualization , 1995, IEEE Visualization.

[25]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[26]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[27]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997 .

[28]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[29]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000 .

[30]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[31]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[32]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 1999, J. Vis. Commun. Image Represent..

[33]  Victoria Interrante,et al.  Strategies for effectively visualizing 3D flow with volume LIC , 1997 .

[34]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[35]  Vivek Verma,et al.  A flow-guided streamline seeding strategy , 2000 .

[36]  Bernd Hamann,et al.  Construction of vector field hierarchies , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[37]  H. Hege,et al.  Fast Line Integral Convolution for Arbitrary Surfaces in 3D , 1997, VisMath.

[38]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[39]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[40]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[41]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[42]  Denis Friboulet,et al.  2D Vector Field Visualization Using Furlike Texture , 1999, VisSym.

[43]  Nelson L. Max,et al.  Visualizing 3D velocity fields near contour surfaces , 1994, Proceedings Visualization '94.

[44]  Pheng-Ann Heng,et al.  Principal stream surfaces , 1997 .

[45]  Lisa K. Forssell,et al.  Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows , 1995, IEEE Trans. Vis. Comput. Graph..