Guessing Random Additive Noise Decoding With Symbol Reliability Information (SRGRAND)

The design and implementation of error correcting codes has long been informed by two fundamental results: Shannon’s 1948 capacity theorem, which established that long codes use noisy channels most efficiently; and Berlekamp, McEliece, and Van Tilborg’s 1978 theorem on the NP-completeness of decoding linear codes. These results shifted focus away from creating code-independent decoders, but recent low-latency communication applications necessitate relatively short codes, providing motivation to reconsider the development of universal decoders. We introduce a scheme for employing binarized symbol soft information within Guessing Random Additive Noise Decoding, a universal hard detection decoder. We incorporate codebook-independent quantization of soft information to indicate demodulated symbols to be reliable or unreliable. We introduce two decoding algorithms: one identifies a conditional Maximum Likelihood (ML) decoding; the other either reports a conditional ML decoding or an error. For random codebooks, we present error exponents and asymptotic complexity, and show benefits over hard detection. As empirical illustrations, we compare performance with majority logic decoding of Reed-Muller codes, with Berlekamp-Massey decoding of Bose-Chaudhuri-Hocquenghem codes, with CA-SCL decoding of CA-Polar codes, and establish the performance of Random Linear Codes, which require a universal decoder and offer a broader palette of code sizes and rates than traditional codes.

[1]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[2]  Rajesh Sundaresan,et al.  Guessing and compression subject to distortion , 2010 .

[3]  Meir Feder,et al.  The Random Coding Bound Is Tight for the Average Linear Code or Lattice , 2013, IEEE Transactions on Information Theory.

[4]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[5]  Venkatesan Guruswami,et al.  Decoding concatenated codes using soft information , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[6]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[7]  John D. Villasenor,et al.  Soft-input soft-output decoding of variable length codes , 2002, IEEE Trans. Commun..

[8]  Muriel Medard,et al.  Capacity-Achieving Guessing Random Additive Noise Decoding , 2018, IEEE Transactions on Information Theory.

[9]  Ken R. Duffy,et al.  Guessing noise, not code-words , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[10]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[11]  Frederick Jelinek,et al.  An upper bound on moments of sequential decoding effort , 1969, IEEE Trans. Inf. Theory.

[12]  Yuichi Kaji,et al.  Decoding linear block codes using the ordered-statistics and the MLD techniques , 2002, Proceedings IEEE International Symposium on Information Theory,.

[13]  J. Massey Guessing and entropy , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[14]  Joachim Hagenauer,et al.  A Viterbi algorithm with soft-decision outputs and its applications , 1989, IEEE Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond.

[15]  Furkan Ercan,et al.  High-Throughput VLSI Architecture for GRAND , 2020, 2020 IEEE Workshop on Signal Processing Systems (SiPS).

[16]  Li Ping,et al.  Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part II: Soft-Input Soft-Output Iterative Decoding , 2010, IEEE Transactions on Information Theory.

[17]  Claude Berrou,et al.  A low complexity soft-output Viterbi decoder architecture , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[18]  Ken R. Duffy,et al.  Guesswork, Large Deviations, and Shannon Entropy , 2012, IEEE Transactions on Information Theory.

[19]  Riccardo Raheli,et al.  Applications of reduced state sequence estimation to terrestrial digital radio links , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[20]  Ernest F. Brickell,et al.  An Observation on the Security of McEliece's Public-Key Cryptosystem , 1988, EUROCRYPT.

[21]  Huaiyu Dai,et al.  A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions , 2017, IEEE Communications Surveys & Tutorials.

[22]  R. A. Silverman,et al.  Coding for Constant-Data-Rate Systems-Part II Multiple-Error-Correcting Codes , 1955, Proceedings of the IRE.

[23]  Marc P. C. Fossorier,et al.  Box and match techniques applied to soft-decision decoding , 2002, IEEE Transactions on Information Theory.

[24]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[25]  N. J. A. Sloane,et al.  Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice , 1986, IEEE Trans. Inf. Theory.

[26]  Andrew C. Singer,et al.  Soft input channel estimation for turbo equalization , 2004, IEEE Transactions on Signal Processing.

[27]  Furkan Ercan,et al.  High-Throughput VLSI Architecture for Soft-Decision Decoding with ORBGRAND , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  Todd K. Moon,et al.  Decoding by iterative detection (DECIDET): Soft-in/soft-out decoding of arbitrary linear block codes over arbitrary finite fields , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[29]  Kai Chen,et al.  CRC-Aided Decoding of Polar Codes , 2012, IEEE Communications Letters.

[30]  Jechang Jeong,et al.  Fast and Scalable Soft Decision Decoding of Linear Block Codes , 2019, IEEE Communications Letters.

[31]  C. Weidmann,et al.  Reduced-complexity soft-ln-soft-out decoding of variable-length codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[32]  Neri Merhav,et al.  Guessing Subject to Distortion , 1998, IEEE Trans. Inf. Theory.

[33]  Thomas Johansson,et al.  Some cryptanalytic and coding-theoretic applications of a soft stern algorithm , 2019, Adv. Math. Commun..

[34]  Erdal Arikan,et al.  Large deviations of probability rank , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[35]  Li Chen,et al.  Algebraic Soft Decoding Algorithms for Reed-Solomon Codes Using Module , 2017, ArXiv.

[36]  P. A. Wintz,et al.  Error Free Coding , 1973 .

[37]  Alexios Balatsoukas-Stimming,et al.  LLR-Based Successive Cancellation List Decoding of Polar Codes , 2013, IEEE Transactions on Signal Processing.

[38]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[39]  Gordon L. Stüber,et al.  Error Probability for Reduced-State Sequence Estimation , 1992, IEEE J. Sel. Areas Commun..

[40]  Lajos Hanzo,et al.  Comparative study of turbo decoding techniques: an overview , 2000, IEEE Trans. Veh. Technol..

[41]  Ken R. Duffy,et al.  Guessing a password over a wireless channel (on the effect of noise non-uniformity) , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[42]  Erdal Arikan,et al.  An upper bound on the cutoff rate of sequential decoding , 1988, IEEE Trans. Inf. Theory.

[43]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[44]  Robert J. McEliece,et al.  Soft decision decoding of block codes , 1978 .

[45]  Rodney M. Goodman,et al.  Any code of which we cannot think is good , 1990, IEEE Trans. Inf. Theory.

[46]  Donald L. Snyder,et al.  Cut-off Rate Channel Design , 1994 .

[47]  Marc P. C. Fossorier,et al.  On the equivalence between SOVA and max-log-MAP decodings , 1998, IEEE Communications Letters.

[48]  Yunghsiang Sam Han,et al.  Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes , 1993, IEEE Trans. Inf. Theory.

[49]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[50]  Jakov Snyders,et al.  Reliability-based code-search algorithms for maximum-likelihood decoding of block codes , 1997, IEEE Trans. Inf. Theory.

[51]  Ken R. Duffy,et al.  Soft Maximum Likelihood Decoding using GRAND , 2020, ICC 2020 - 2020 IEEE International Conference on Communications (ICC).

[52]  J. Massey,et al.  Communications and Cryptography: Two Sides of One Tapestry , 1994 .

[53]  Yan-Haw Chen,et al.  Fast chase algorithms for decoding Reed-Solomon codes , 2014, 2014 International Symposium on Next-Generation Electronics (ISNE).

[54]  Petar Popovski,et al.  Towards Massive, Ultra-Reliable, and Low-Latency Wireless Communication with Short Packets , 2015 .

[55]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[56]  Martin Bossert,et al.  On Iterative Soft-Decision Decoding of Linear Binary Block Codes and Product Codes , 1998, IEEE J. Sel. Areas Commun..

[57]  Eugene Prange,et al.  The use of information sets in decoding cyclic codes , 1962, IRE Trans. Inf. Theory.

[58]  Dina Satybaldina,et al.  Soft decision decoding techniques in multithreshold decoding of self-orthogonal codes , 2013, 2013 18th International Conference on Digital Signal Processing (DSP).

[59]  Robert J. McEliece,et al.  Iterative algebraic soft-decision list decoding of Reed-Solomon codes , 2005, IEEE Journal on Selected Areas in Communications.

[60]  Yasuo Hirata,et al.  High-Rate Punctured Convolutional Codes for Soft Decision Viterbi Decoding , 1984, IEEE Trans. Commun..

[61]  Mikael Skoglund,et al.  On source decoding based on finite-bandwidth soft information , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[62]  Dariush Divsalar,et al.  A soft-input soft-output APP module for iterative decoding of concatenated codes , 1997, IEEE Communications Letters.

[63]  E. J. Weldon,et al.  Decoding binary block codes on Q-ary output channels , 1971, IEEE Trans. Inf. Theory.

[64]  Ken R. Duffy,et al.  Ordered Reliability Bits Guessing Random Additive Noise Decoding , 2020, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[65]  Frank R. Kschischang,et al.  A VLSI architecture for interpolation in soft-decision list decoding of Reed-Solomon codes , 2002, IEEE Workshop on Signal Processing Systems.

[66]  Shahid U. H. Qureshi,et al.  Reduced-state sequence estimation for coded modulation of intersymbol interference channels , 1989, IEEE J. Sel. Areas Commun..

[67]  B. V. K. Vijaya Kumar,et al.  Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-and-Erasure Decoding , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[68]  R. Sivasankaran,et al.  Performance of soft-in soft-out stack decoding , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[69]  Lajos Hanzo,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels , 2002 .

[70]  S. J. Simmons,et al.  Reduced-search trellis decoding of coded modulations over ISI channels , 1990, [Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and Exhibition.

[71]  J. Hagenauer,et al.  Decoding "turbo"-codes with the soft output Viterbi algorithm (SOVA) , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[72]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[73]  Ken R. Duffy,et al.  CRC Codes as Error Correction Codes , 2021, ICC 2021 - IEEE International Conference on Communications.

[74]  S. Arimoto,et al.  Computational moments for sequential decoding of convolutional codes , 1979, IEEE Trans. Inf. Theory.

[75]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[76]  Ken R. Duffy,et al.  Guessing random additive noise decoding with soft detection symbol reliability information - SGRAND , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[77]  Muriel Medard,et al.  Is 5 just what comes after 4? , 2020, Nature Electronics.

[78]  C. Cahn,et al.  Binary Decoding Extended to Nonbinary Demodulation of Phase Shift Keying , 1969 .

[79]  Jeffrey S. Leon,et al.  A probabilistic algorithm for computing minimum weights of large error-correcting codes , 1988, IEEE Trans. Inf. Theory.

[80]  Tanja Lange,et al.  Smaller decoding exponents: ball-collision decoding , 2011, IACR Cryptol. ePrint Arch..

[81]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[82]  Yair Be'ery,et al.  Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes , 1989, IEEE Trans. Inf. Theory.

[83]  Takuya Kusaka,et al.  A study on soft-out of soft-in/soft-out decoding algorithms for binary linear codes , 2016, 2016 International Symposium on Information Theory and Its Applications (ISITA).

[84]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[85]  Stanley J. Simmons,et al.  Breadth-first trellis decoding with adaptive effort , 1990, IEEE Trans. Commun..

[86]  John B. Anderson,et al.  Sequential Coding Algorithms: A Survey and Cost Analysis , 1984, IEEE Trans. Commun..

[87]  Yonina C. Eldar,et al.  A Coding Theory Perspective on Multiplexed Molecular Profiling of Biological Tissues , 2020, 2020 International Symposium on Information Theory and Its Applications (ISITA).

[88]  Ken R. Duffy,et al.  Multi-Code Multi-Rate Universal Maximum Likelihood Decoder using GRAND , 2021, ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC).

[89]  Shigeichi Hirasawa,et al.  An improvement of soft-decision maximum-likelihood decoding algorithm using hard-decision bounded-distance decoding , 1997, IEEE Trans. Inf. Theory.

[90]  Baoming Bai,et al.  Hash-Polar Codes With Application to 5G , 2019, IEEE Access.

[91]  Helmut Bölcskei,et al.  Soft–Input Soft–Output Single Tree-Search Sphere Decoding , 2009, IEEE Transactions on Information Theory.

[92]  Rajesh Sundaresan,et al.  DRDO – IISc Programme on Advanced Research in Mathematical Engineering Guessing Based On Length Functions ( TR-PME-2007-02 ) by , 2007 .

[93]  B. Dorsch,et al.  A decoding algorithm for binary block codes and J -ary output channels (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[94]  Erdal Arikan,et al.  On the Origin of Polar Coding , 2015, IEEE Journal on Selected Areas in Communications.

[95]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[96]  John M. Wozencraft,et al.  Sequential decoding for reliable communication , 1957 .

[97]  Erdal Arikan An inequality on guessing and its application to sequential decoding , 1996, IEEE Trans. Inf. Theory.

[98]  Robert Mario Fano,et al.  A heuristic discussion of probabilistic decoding , 1963, IEEE Trans. Inf. Theory.

[99]  Branka Vucetic,et al.  Ultra-Reliable Low Latency Cellular Networks: Use Cases, Challenges and Approaches , 2017, IEEE Communications Magazine.

[100]  Xiao Ma,et al.  Progressive algebraic Chase decoding algorithms for Reed-Solomon codes , 2016, IET Commun..

[101]  J. Bibb Cain,et al.  Soft Decision Decoding of Block Codes , 1981 .

[102]  Pinaki Mazumder,et al.  An Efficient Eligible Error Locator Polynomial Searching Algorithm and Hardware Architecture for One-Pass Chase Decoding of BCH Codes , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[103]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[104]  Elwyn R. Berlekamp,et al.  Bounded distance+1 soft-decision Reed-Solomon decoding , 1996, IEEE Trans. Inf. Theory.

[105]  Antoine Joux,et al.  Decoding Random Binary Linear Codes in 2n/20: How 1+1=0 Improves Information Set Decoding , 2012, IACR Cryptol. ePrint Arch..

[106]  Chenyang Yang,et al.  Radio Resource Management for Ultra-Reliable and Low-Latency Communications , 2017, IEEE Communications Magazine.

[107]  Norbert Wehn,et al.  A 506Gbit/s Polar Successive Cancellation List Decoder with CRC , 2020, 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications.

[108]  David Malone,et al.  Guesswork and entropy , 2004, IEEE Transactions on Information Theory.

[109]  Desmond P. Taylor,et al.  Reduced complexity soft-input soft-output "box and match" decoding , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[110]  Kishori M. Konwar,et al.  5G NR CA-Polar Maximum Likelihood Decoding by GRAND , 2019, 2020 54th Annual Conference on Information Sciences and Systems (CISS).

[111]  Patrick Robertson,et al.  Improved decoding with the SOVA in a parallel concatenated (Turbo-code) scheme , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[112]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[113]  Ken R. Duffy,et al.  Keep the bursts and ditch the interleavers , 2020, ArXiv.

[114]  Aleksandar Kavcic,et al.  A Low-Complexity Method for Chase-Type Decoding of Reed-Solomon Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[115]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[116]  G. Ungerboeck,et al.  Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data-Transmission Systems , 1974, IEEE Trans. Commun..

[117]  Sergio Benedetto,et al.  Soft-input soft-output building blocks to construct and iteratively decode code networks , 1997, Proceedings of IEEE International Symposium on Information Theory.

[118]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[119]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[120]  Ken R. Duffy,et al.  A Characterization of Guesswork on Swiftly Tilting Curves , 2018, IEEE Transactions on Information Theory.

[121]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[122]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[123]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[124]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[125]  Christoforos N. Hadjicostis,et al.  Soft-Decision Decoding of Linear Block Codes Using Preprocessing and Diversification , 2007, IEEE Transactions on Information Theory.

[126]  R. A. Silverman,et al.  Coding for Constant-Data-Rate Systems-Part I. A New Error-Correcting Code , 1954, Proceedings of the IRE.

[127]  Christoforos N. Hadjicostis,et al.  Soft-Decision Decoding Using Ordered Recodings on the Most Reliable Basis , 2007, IEEE Transactions on Information Theory.

[128]  Hideki Imai,et al.  Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..

[129]  Gerard J. Foschini,et al.  A reduced state variant of maximum likelihood sequence detection attaining optimum performance for high signal-to-noise ratios , 1977, IEEE Trans. Inf. Theory.

[130]  Shie Mannor,et al.  Stochastic Chase Decoding of Reed-Solomon Codes , 2010, IEEE Communications Letters.

[131]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[132]  John B. Anderson,et al.  Limited search trellis decoding of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[133]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[134]  Elwyn R. Berlekamp,et al.  A lower bound to the distribution of computation for sequential decoding , 1967, IEEE Trans. Inf. Theory.

[135]  Bertrand Le Gal,et al.  AFF3CT: A Fast Forward Error Correction Toolbox! , 2019, SoftwareX.

[136]  Christiane Peters,et al.  Information-Set Decoding for Linear Codes over Fq , 2010, PQCrypto.

[137]  D. Falconer A hybrid coding scheme for discrete memoryless channels , 1969 .

[138]  Alexander Vardy,et al.  Maximum-Likelihood Soft Decision Decoding of Bch Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[139]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[140]  Giulio Colavolpe,et al.  Noncoherent iterative (turbo) decoding , 2000, IEEE Trans. Commun..

[141]  E. O. Elliott Estimates of error rates for codes on burst-noise channels , 1963 .

[142]  Rong Li,et al.  Parity-Check Polar Coding for 5G and Beyond , 2018, 2018 IEEE International Conference on Communications (ICC).

[143]  E. Gilbert Capacity of a burst-noise channel , 1960 .

[144]  Andrew C. Singer,et al.  A new adaptive turbo equalizer with soft information classification , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[145]  Marco Baldi,et al.  On the use of ordered statistics decoders for low-density parity-check codes in space telecommand links , 2016, EURASIP J. Wirel. Commun. Netw..

[146]  C. E. Pfister,et al.  Renyi entropy, guesswork moments, and large deviations , 2004, IEEE Transactions on Information Theory.

[147]  Warren J. Gross,et al.  Stochastic chase decoder for reed-solomon codes , 2012, 10th IEEE International NEWCAS Conference.

[148]  Alan Weiss,et al.  Large Deviations For Performance Analysis: Queues, Communication and Computing , 1995 .

[149]  Yunghsiang Sam Han,et al.  A maximum-likelihood soft-decision sequential decoding algorithm for binary convolutional codes , 2002, IEEE Trans. Commun..