Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl–Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating hysteresis nonlinearities effects in SMA actuators. In this paper a feedforward–feedback controller is used to control the tip deflection of a large deflected flexible beam actuated by an SMA actuator wire. The feedforward part of the control system is based on the generalized Prandtl–Ishlinskii inverse model while a conventional proportional–integral feedback controller is added to the feedforward controller to increase the accuracy together with eliminating the steady state error in position control process. Experimental results show that the proposed controller performs well in terms of achieving small overshoot and undershoot for square wave tracking as well as small tracking errors for sinusoidal trajectory. It has also great capability for tracking hysteresis minor loops.

[1]  A. Kurdila,et al.  Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .

[2]  Ralph C. Smith Inverse compensation for hysteresis in magnetostrictive transducers , 2001 .

[3]  Wen-Yuh Jywe,et al.  Precision tracking control of a piezoelectric-actuated system , 2008 .

[4]  Yan-Hua Ma,et al.  On Modeling and Tracking Control for a Smart Structure with Stress-dependent Hysteresis Nonlinearity , 2010 .

[5]  V. Etxebarria,et al.  Micropositioning control using shape memory alloys , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[6]  Kyoung Kwan Ahn,et al.  Improvement of the performance of hysteresis compensation in SMA actuators by using inverse Preisach model in closed — loop control system , 2006 .

[7]  Tien-I Liu,et al.  Control of Shape Memory Alloy Actuators with a Neuro-fuzzy Feedforward Model Element , 2006, J. Intell. Manuf..

[8]  S. O. R. Moheimani,et al.  Inverse-feedforward of charge-controlled piezopositioners q , qq , 2008 .

[9]  G. Song,et al.  Control of Shape Memory Alloy Actuators Using Pulse-Width Pulse-Frequency (PWPF) Modulation , 2003 .

[10]  Mohammad Reza Zakerzadeh,et al.  Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators , 2012 .

[11]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[12]  Seung-Bok Choi,et al.  Vibration and Position Tracking Control of a Flexible Beam Using SMA Wire Actuators , 2009 .

[13]  Mehdi Ahmadian,et al.  Application of the extended Kalman filter to control of a shape memory alloy arm , 2006 .

[14]  M. Matsumoto Shape memory alloys. , 1988 .

[15]  E. P. Silva,et al.  Beam shape feedback control by means of a shape memory actuator , 2007 .

[16]  Po-Ying Chen,et al.  Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation , 2011 .

[17]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[18]  Young-Woo Park,et al.  Control of a magnetostrictive actuator with feedforwarding inverted hysteresis , 2004 .

[19]  H. Sayyaadi,et al.  Modeling of a Nonlinear Euler-Bernoulli Flexible Beam Actuated by Two Active Shape Memory Alloy Actuators , 2011 .

[20]  Saeid Bashash,et al.  Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems , 2007, IEEE Transactions on Control Systems Technology.

[21]  Victor Etxebarria,et al.  Neural network-based micropositioning control of smart shape memory alloy actuators , 2008, Eng. Appl. Artif. Intell..

[22]  A. Visintin Differential models of hysteresis , 1994 .

[23]  M. Moallem,et al.  Tracking Control of an Antagonistic Shape Memory Alloy Actuator Pair , 2009, IEEE Transactions on Control Systems Technology.

[24]  Hyo Jik Lee,et al.  Time delay control of a shape memory alloy actuator , 2004 .

[25]  In Lee,et al.  Experimental Studies on Active Shape Control of Composite Structures using SMA Actuators , 2006 .

[26]  Gangbing Song,et al.  Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks , 2004 .

[27]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[28]  Gholamreza Vossoughi,et al.  Adaptive sliding mode control of a piezo-actuated bilateral teleoperated micromanipulation system , 2011 .

[29]  W. Galinaitis Two Methods for Modeling Scalar Hysteresis and their use in Controlling Actuators with Hysteresis , 1999 .

[30]  John S. Baras,et al.  Control of hysteresis in smart actuators with application to micro-positioning , 2005, Syst. Control. Lett..

[31]  Ming-Jyi Jang,et al.  Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis , 2009, J. Frankl. Inst..

[32]  Seung-Bok Choi Position control of a single-link mechanism activated by shape memory alloy springs: experimental results , 2006 .

[33]  Kam K. Leang,et al.  Iterative and Feedback Control for Hysteresis Compensation in SMA , 2009 .

[34]  Gangbing Song,et al.  Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller , 2003 .

[35]  G. Song,et al.  A Neural Network Inverse Model for a Shape Memory Alloy Wire Actuator , 2003 .

[36]  G. Song,et al.  Control of shape memory alloy actuator using pulse width modulation , 2003 .

[37]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[38]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[39]  Lining Sun,et al.  A hysteresis compensation method of piezoelectric actuator: Model, identification and control , 2009 .

[40]  Ying-Shieh Kung,et al.  Precision Control of a Piezoceramic Actuator Using Neural Networks , 2004 .

[41]  Tadahiro Hasegawa,et al.  Modeling of shape memory alloy actuator and tracking control system with the model , 2001, IEEE Trans. Control. Syst. Technol..

[42]  Hashem Ashrafiuon,et al.  Sliding Mode Control of Mechanical Systems Actuated by Shape Memory Alloy , 2009 .

[43]  Ruxandra Botez,et al.  Closed-loop control simulations on a morphing wing , 2008 .

[44]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[45]  Chun-Yi Su,et al.  A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .

[46]  Ayyoub Rezaeeian,et al.  ANFIS modeling and feed forward control of shape memory alloy actuators , 2008 .

[47]  Dimitris C. Lagoudas,et al.  Adaptive Hysteresis Model for Model Reference Control with Actuator Hysteresis , 2000 .

[48]  C. Visone,et al.  “Moving” Prandtl–Ishilinskii operators with compensator in a closed form , 2006 .

[49]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[50]  Mozafar Saadat,et al.  Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators , 2011 .

[51]  V. Etxebarria,et al.  Micropositioning using shape memory alloy actuators , 2008 .

[52]  Jeong-Hoi Koo,et al.  Backstepping Control of a Shape Memory Alloy Actuated Robotic Arm , 2005 .

[53]  Kyoung Kwan Ahn,et al.  Feedforward Control of Shape Memory Alloy Actuators Using Fuzzy-Based Inverse Preisach Model , 2009, IEEE Transactions on Control Systems Technology.

[54]  Kyoung Kwan Ahn,et al.  Internal Model Control for Shape Memory Alloy Actuators using Fuzzy Based preisach Model , 2007, 2007 International Conference on Mechatronics and Automation.

[55]  Dimitris C. Lagoudas,et al.  Adaptive Control of Shape Memory Alloy Actuators for Underwater Biomimetic Applications , 2000 .

[56]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[57]  John T. Wen,et al.  Preisach modeling and compensation for smart material hysteresis , 1995, Other Conferences.

[58]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[59]  Aria Alasty,et al.  Stability analysis and nonlinear control of a miniature shape memory alloy actuator for precise applications , 2005 .