Foundations of atmospheric pressure non-equilibrium plasmas
暂无分享,去创建一个
[1] H. Yamada,et al. Transient glow discharge in nitrogen after the breakdown , 1994 .
[2] J. Hopwood,et al. Microplasmas ignited and sustained by microwaves , 2014 .
[3] V. Puech,et al. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets , 2012 .
[4] E. Nasser. Fundamentals of gaseous ionization and plasma electronics , 1971 .
[5] P. Bruggeman,et al. Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode , 2009 .
[6] S. Reuter,et al. Diagnostics on an atmospheric pressure plasma jet , 2007 .
[7] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .
[8] Zoltan Donko,et al. PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect , 2009 .
[9] James L. Walsh,et al. Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .
[10] Nikolay Popov,et al. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism , 2011 .
[11] Iu. P. Raizer. Gas Discharge Physics , 1991 .
[12] J. Eden,et al. 25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas , 2017 .
[13] G. Naidis. Modelling of plasma bullet propagation along a helium jet in ambient air , 2011 .
[14] Karl H. Schoenbach,et al. Non-Equilibrium Air Plasmas at Atmospheric Pressure , 2004 .
[15] L. Loeb,et al. The Mechanism of the Trichel Pulses of Short Time Duration in Air , 1952 .
[16] P. Fauchais,et al. Thermal plasmas , 1997 .
[17] van de Mcm Richard Sanden,et al. Atmospheric glow stabilization. Do we need pre-ionization? , 2005 .
[18] S. Starikovskaia. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms , 2014 .
[19] J. Vierendeels,et al. Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin–water electrode system , 2007 .
[20] J. R. Wayland,et al. A Search for X Rays from Helium and Air Discharges at Atmospheric Pressure , 1968 .
[21] M. Laroussi,et al. The resistive barrier discharge , 2002 .
[22] A. Czernichowski,et al. Gliding arc: Applications to engineering and environment control , 1994 .
[23] Van Gessel. Laser diagnostics on atmospheric pressure plasma jets , 2013 .
[24] M. Shneider. Liquid Dielectrics in an Inhomogeneous Pulsed Electric Field , 2016 .
[25] A. Fridman. Plasma Chemistry: Frontmatter , 2008 .
[26] R. S. Sigmond,et al. The corona discharge, its properties and specific uses , 1985 .
[27] Mounir Laroussi,et al. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review , 2007 .
[28] J. Benedikt,et al. Quadrupole mass spectrometry of reactive plasmas , 2012 .
[29] N. Brenning,et al. High-pressure pulsed avalanche discharges: formulas for required preionization density and rate for homogeneity , 1997 .
[30] A. Jay Palmer,et al. A physical model on the initiation of atmospheric‐pressure glow discharges , 1974 .
[31] S. Pancheshnyi. Role of electronegative gas admixtures in streamer start, propagation and branching phenomena , 2005 .
[32] M. Moisan,et al. Achieving non-contracted and non-filamentary rare-gas tubular discharges at atmospheric pressure , 2009 .
[33] P. Bruggeman,et al. An introduction to nonequilibrium plasmas at atmospheric pressure , 2012 .
[34] Y. Akishev,et al. High-current cathode and anode spots in gas discharges at moderate and elevated pressures , 2014 .
[35] N. Gherardi,et al. Recent advances in the understanding of homogeneous dielectric barrier discharges , 2009 .
[36] Jianjun Shi,et al. Mechanisms of the α and γ modes in radio-frequency atmospheric glow discharges , 2005 .
[37] K. Ostrikov,et al. Feather-like He plasma plumes in surrounding N2 gas , 2013 .
[38] N. Aleksandrov,et al. Nonequilibrium Plasma Aerodynamics , 2011 .
[39] K. V. Kozlov,et al. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure , 2001 .
[40] D. Pai,et al. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime , 2009 .
[41] U. Kogelschatz,et al. Collective phenomena in volume and surface barrier discharges , 2010 .
[42] M. Hori,et al. The 2012 Plasma Roadmap , 2012 .
[43] V. Veldhuizen,et al. Pulsed positive corona streamer propagation and branching , 2002 .
[44] J. Walsh,et al. Atmospheric-pressure gas breakdown from 2 to 100 MHz , 2008 .
[45] H. Raether. Electron avalanches and breakdown in gases , 1964 .
[46] G. Mesyats. Ecton or electron avalanche from metal , 1995 .
[47] U. Kogelschatz. Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .
[48] Jen-Shih Chang,et al. Corona discharge processes , 1991 .
[49] T. Grotjohn,et al. Microstripline applicators for creating microplasma discharges with microwave energy , 2008 .
[50] Christophe Leys,et al. Non-thermal plasmas in and in contact with liquids , 2009 .
[51] M. Lieberman,et al. Ion energy distributions in rf sheaths; review, analysis and simulation , 1999 .
[52] A. Napartovich,et al. The DC glow discharge at atmospheric pressure , 2002 .
[53] E. Moreau,et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology , 2017 .
[54] A. Fridman,et al. Gliding arc in tornado using a reverse vortex flow , 2005 .
[55] J. Meek,et al. Electrical breakdown of gases , 1953 .
[56] L. Loeb,et al. The mechanism of the electric spark , 1941 .
[57] N. Bonifaci,et al. Ionization phenomenon in high-density gaseous and liquid argon in corona discharge experiments , 1997 .
[58] O. Lesaint,et al. Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties , 2016 .
[59] Erich E. Kunhardt,et al. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .
[60] N. Babaeva,et al. Fluid and hybrid modeling of nanosecond surface discharges: effect of polarity and secondary electrons emission , 2016 .
[61] Michel Moisan,et al. Plasma sources based on the propagation of electromagnetic surface waves , 1991 .
[62] A. Luque,et al. Positive and negative streamers in ambient air: modelling evolution and velocities , 2008, 0804.3539.
[63] Karl H. Schoenbach,et al. Microplasmas and applications , 2006 .
[64] Anatoly P. Napartovich,et al. Negative corona, glow and spark discharges in ambient air and transitions between them , 2005 .
[65] I. Kochetov,et al. A non-thermal mechanism of spark breakdown in Ar , 1999 .
[66] Kunihide Tachibana,et al. Current status of microplasma research , 2006 .
[67] Xi-yun Lu,et al. A non-equilibrium diffuse discharge in atmospheric pressure air* A non-equilibrium diffuse discharge , 2003 .
[68] Jianjun Shi,et al. Radio-frequency dielectric-barrier glow discharges in atmospheric argon , 2007 .
[69] R. Schneider,et al. Nonthermal Plasma Chemistry and Physics , 2012 .
[70] F. Paschen,et al. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .
[71] Eric Moreau,et al. Airflow control by non-thermal plasma actuators , 2007 .
[72] Stephane Pasquiers,et al. Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage , 2009 .
[73] C. Borghi,et al. EHD-driven mass transport enhancement in surface dielectric barrier discharges , 2016 .
[74] J. Walsh,et al. Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array , 2013 .
[75] M. Janda,et al. Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters , 2011 .
[76] Karl H. Schoenbach,et al. 20 years of microplasma research: a status report , 2016 .