Foundations of atmospheric pressure non-equilibrium plasmas

Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of nonequilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

[1]  H. Yamada,et al.  Transient glow discharge in nitrogen after the breakdown , 1994 .

[2]  J. Hopwood,et al.  Microplasmas ignited and sustained by microwaves , 2014 .

[3]  V. Puech,et al.  On atmospheric-pressure non-equilibrium plasma jets and plasma bullets , 2012 .

[4]  E. Nasser Fundamentals of gaseous ionization and plasma electronics , 1971 .

[5]  P. Bruggeman,et al.  Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode , 2009 .

[6]  S. Reuter,et al.  Diagnostics on an atmospheric pressure plasma jet , 2007 .

[7]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[8]  Zoltan Donko,et al.  PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect , 2009 .

[9]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[10]  Nikolay Popov,et al.  Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism , 2011 .

[11]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[12]  J. Eden,et al.  25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas , 2017 .

[13]  G. Naidis Modelling of plasma bullet propagation along a helium jet in ambient air , 2011 .

[14]  Karl H. Schoenbach,et al.  Non-Equilibrium Air Plasmas at Atmospheric Pressure , 2004 .

[15]  L. Loeb,et al.  The Mechanism of the Trichel Pulses of Short Time Duration in Air , 1952 .

[16]  P. Fauchais,et al.  Thermal plasmas , 1997 .

[17]  van de Mcm Richard Sanden,et al.  Atmospheric glow stabilization. Do we need pre-ionization? , 2005 .

[18]  S. Starikovskaia Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms , 2014 .

[19]  J. Vierendeels,et al.  Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin–water electrode system , 2007 .

[20]  J. R. Wayland,et al.  A Search for X Rays from Helium and Air Discharges at Atmospheric Pressure , 1968 .

[21]  M. Laroussi,et al.  The resistive barrier discharge , 2002 .

[22]  A. Czernichowski,et al.  Gliding arc: Applications to engineering and environment control , 1994 .

[23]  Van Gessel Laser diagnostics on atmospheric pressure plasma jets , 2013 .

[24]  M. Shneider Liquid Dielectrics in an Inhomogeneous Pulsed Electric Field , 2016 .

[25]  A. Fridman Plasma Chemistry: Frontmatter , 2008 .

[26]  R. S. Sigmond,et al.  The corona discharge, its properties and specific uses , 1985 .

[27]  Mounir Laroussi,et al.  Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review , 2007 .

[28]  J. Benedikt,et al.  Quadrupole mass spectrometry of reactive plasmas , 2012 .

[29]  N. Brenning,et al.  High-pressure pulsed avalanche discharges: formulas for required preionization density and rate for homogeneity , 1997 .

[30]  A. Jay Palmer,et al.  A physical model on the initiation of atmospheric‐pressure glow discharges , 1974 .

[31]  S. Pancheshnyi Role of electronegative gas admixtures in streamer start, propagation and branching phenomena , 2005 .

[32]  M. Moisan,et al.  Achieving non-contracted and non-filamentary rare-gas tubular discharges at atmospheric pressure , 2009 .

[33]  P. Bruggeman,et al.  An introduction to nonequilibrium plasmas at atmospheric pressure , 2012 .

[34]  Y. Akishev,et al.  High-current cathode and anode spots in gas discharges at moderate and elevated pressures , 2014 .

[35]  N. Gherardi,et al.  Recent advances in the understanding of homogeneous dielectric barrier discharges , 2009 .

[36]  Jianjun Shi,et al.  Mechanisms of the α and γ modes in radio-frequency atmospheric glow discharges , 2005 .

[37]  K. Ostrikov,et al.  Feather-like He plasma plumes in surrounding N2 gas , 2013 .

[38]  N. Aleksandrov,et al.  Nonequilibrium Plasma Aerodynamics , 2011 .

[39]  K. V. Kozlov,et al.  Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure , 2001 .

[40]  D. Pai,et al.  Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the glow regime , 2009 .

[41]  U. Kogelschatz,et al.  Collective phenomena in volume and surface barrier discharges , 2010 .

[42]  M. Hori,et al.  The 2012 Plasma Roadmap , 2012 .

[43]  V. Veldhuizen,et al.  Pulsed positive corona streamer propagation and branching , 2002 .

[44]  J. Walsh,et al.  Atmospheric-pressure gas breakdown from 2 to 100 MHz , 2008 .

[45]  H. Raether Electron avalanches and breakdown in gases , 1964 .

[46]  G. Mesyats Ecton or electron avalanche from metal , 1995 .

[47]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[48]  Jen-Shih Chang,et al.  Corona discharge processes , 1991 .

[49]  T. Grotjohn,et al.  Microstripline applicators for creating microplasma discharges with microwave energy , 2008 .

[50]  Christophe Leys,et al.  Non-thermal plasmas in and in contact with liquids , 2009 .

[51]  M. Lieberman,et al.  Ion energy distributions in rf sheaths; review, analysis and simulation , 1999 .

[52]  A. Napartovich,et al.  The DC glow discharge at atmospheric pressure , 2002 .

[53]  E. Moreau,et al.  The 2017 Plasma Roadmap: Low temperature plasma science and technology , 2017 .

[54]  A. Fridman,et al.  Gliding arc in tornado using a reverse vortex flow , 2005 .

[55]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[56]  L. Loeb,et al.  The mechanism of the electric spark , 1941 .

[57]  N. Bonifaci,et al.  Ionization phenomenon in high-density gaseous and liquid argon in corona discharge experiments , 1997 .

[58]  O. Lesaint,et al.  Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties , 2016 .

[59]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[60]  N. Babaeva,et al.  Fluid and hybrid modeling of nanosecond surface discharges: effect of polarity and secondary electrons emission , 2016 .

[61]  Michel Moisan,et al.  Plasma sources based on the propagation of electromagnetic surface waves , 1991 .

[62]  A. Luque,et al.  Positive and negative streamers in ambient air: modelling evolution and velocities , 2008, 0804.3539.

[63]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[64]  Anatoly P. Napartovich,et al.  Negative corona, glow and spark discharges in ambient air and transitions between them , 2005 .

[65]  I. Kochetov,et al.  A non-thermal mechanism of spark breakdown in Ar , 1999 .

[66]  Kunihide Tachibana,et al.  Current status of microplasma research , 2006 .

[67]  Xi-yun Lu,et al.  A non-equilibrium diffuse discharge in atmospheric pressure air* A non-equilibrium diffuse discharge , 2003 .

[68]  Jianjun Shi,et al.  Radio-frequency dielectric-barrier glow discharges in atmospheric argon , 2007 .

[69]  R. Schneider,et al.  Nonthermal Plasma Chemistry and Physics , 2012 .

[70]  F. Paschen,et al.  Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz , 1889 .

[71]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[72]  Stephane Pasquiers,et al.  Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage , 2009 .

[73]  C. Borghi,et al.  EHD-driven mass transport enhancement in surface dielectric barrier discharges , 2016 .

[74]  J. Walsh,et al.  Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array , 2013 .

[75]  M. Janda,et al.  Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters , 2011 .

[76]  Karl H. Schoenbach,et al.  20 years of microplasma research: a status report , 2016 .