Synergistic combinations of dielectrics and metallization process technology to achieve 22nm interconnect performance targets

[1]  G. A. Antonelli,et al.  Designing Ultra Low-k Dielectric Materials for Ease of Patterning , 2010 .

[2]  John C. Arnold,et al.  The Effect of Material and Process Interactions on BEOL Integration , 2009 .

[3]  Oxygen radical and plasma damage of low-k organosilicate glass materials: Diffusion-controlled mechanism for carbon depletion , 2009 .

[4]  Thomas P. Minka,et al.  Gates , 2008, NIPS.

[5]  Karen Maex,et al.  Diffusion of solvents in thin porous films , 2007 .

[6]  H. Cui,et al.  Process integration compatibility of low-k and ultra-low-k dielectrics , 2005 .

[7]  Karen Maex,et al.  Influence of the electron mean free path on the resistivity of thin metal films , 2004 .

[8]  Gregg M. Gallatin,et al.  Effect of thin-film imaging on line edge roughness transfer to underlayers during etch processes , 2004 .

[9]  Karen Maex,et al.  Low dielectric constant materials for microelectronics , 2003 .

[10]  K. Maex,et al.  Diffusion barrier integrity evaluation by ellipsometric porosimetry , 2003 .

[11]  S. Moon,et al.  Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma. I. Effect of particle emission from the bottom surface in a CF4 plasma , 2002 .

[12]  A. Grill From tribological coatings to low-k dielectrics for ULSI interconnects , 2001 .

[13]  Alfred Grill,et al.  Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition , 2001 .

[14]  J. Ye,et al.  Carbon Rich Plasma‐Induced Damage in Silicon Nitride Etch , 2000 .

[15]  Yiping Zhao,et al.  Roughening in Plasma Etch Fronts of Si(100) , 1999 .

[16]  S. Rossnagel Directional and preferential sputtering-based physical vapor deposition , 1995 .