Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case

In this paper we consider aperiodic ergodic Markov chains with transition probabilities exponentially small in a large parameter β. We extend to the general, not necessarily reversible case the analysis, started in part I of this work, of the first exit problem from a general domainQ containing many stable equilibria (attracting equilibrium points for the β=∞ dynamics). In particular we describe the tube of typical trajectories during the first excursion outsideQ.

[1]  T. Chiang,et al.  A Limit Theorem for a Class of Inhomogeneous Markov Processes , 1989 .

[2]  A. Trouvé Rough Large Deviation Estimates for the Optimal Convergence Speed Exponent of Generalized Simulated , 1994 .

[3]  Roberto H. Schonmann,et al.  Critical droplets and metastability for a Glauber dynamics at very low temperatures , 1991 .

[4]  Elisabetta Scoppola Metastability for Markov Chains: A General Procedure Based on Renormalization Group Ideas , 1993 .

[5]  C. Hwang,et al.  Singular perturbed Markov chains and exact behaviors of simulated annealing processes , 1992 .

[6]  Renormalization and graph methods for Markov chains , 1995 .

[7]  R. Kotecḱy,et al.  Shapes of growing droplets—A model of escape from a metastable phase , 1994 .

[8]  Antonio Galves,et al.  Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .

[9]  Elisabetta Scoppola Renormalization group for Markov chains and application to metastability , 1993 .

[10]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[11]  O. Catoni Sharp large deviations estimates for simulated annealing algorithms , 1991 .

[12]  R. Kotecḱy,et al.  Droplet dynamics for asymmetric Ising model , 1993 .

[13]  T. Chiang,et al.  Asymptotic behavior of eigenvalues and random updating schemes , 1993 .

[14]  Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition , 1995, hep-th/9505055.

[15]  O. Catoni Rough Large Deviation Estimates for Simulated Annealing: Application to Exponential Schedules , 1992 .

[16]  R. Schonmann,et al.  Behavior of droplets for a class of Glauber dynamics at very low temperature , 1992 .

[17]  Fabio Martinelli,et al.  Metastability and exponential approach to equilibrium for low-temperature stochastic Ising models , 1990 .

[18]  Roberto H. Schonmann,et al.  The pattern of escape from metastability of a stochastic ising model , 1992 .