A Probabilistic Approach for Prognostics of Complex Rotary Machinery Systems

............................................................................................................................................... ii ACKNOWLEDGMENTS ......................................................................................................................... v LIST OF FIGURES .................................................................................................................................. ix LIST OF TABLES ................................................................................................................................... xii CHAPTER 1 INTRODUCTION .......................................................................................................... 1 1.1 Motivation .............................................................................................................................................. 1 1.2 Research Objective .............................................................................................................................. 3 1.3 Contributions and Broader Impacts .............................................................................................. 4 1.4 Dissertation Organization ................................................................................................................. 6 CHAPTER 2 LITERATURE SURVEY ON RELATED RESEARCH .............................................. 8 2.1 Prognostics for Complex Systems .................................................................................................. 8 2.2 Research Gaps ..................................................................................................................................... 12 CHAPTER 3 BAYESIAN NETWORK FOR PROGNOSTICS ...................................................... 16 3.1 A Systematic Methodology .............................................................................................................. 16 3.2 Bayesian Theory and Bayesian Networks ................................................................................. 18 3.3 An Example of Using BBN for Prognosis Application ............................................................. 26 CHAPTER 4 DATA-­‐DRIVEN PROGNOSTICS – WIND TURBINE PERFORMANCE ASSESSMENT AND FAULT DETECTION ....................................................................................... 39 4.1 Introduction ......................................................................................................................................... 39 4.2 Motivation of Applying Bayesian Technique ............................................................................ 47 4.3 A Bayesian based Approach for Performance Assessment ................................................. 54

[1]  Lihua Xie,et al.  Robust control of a class of uncertain nonlinear systems , 1992 .

[2]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[3]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[4]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[5]  Wei Wang,et al.  H∞ Controller for Networked Nonlinear Manufacturing Process Interconnected Systems Based on T-S Fuzzy Model , 2011 .

[6]  S.D.J. McArthur,et al.  A Multi-Agent Fault Detection System for Wind Turbine Defect Recognition and Diagnosis , 2007, 2007 IEEE Lausanne Power Tech.

[7]  David Infield,et al.  Online wind turbine fault detection through automated SCADA data analysis , 2009 .

[8]  Cheng-Wu Chen,et al.  Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems , 2004, Math. Comput. Simul..

[9]  A. Abu-Hanna,et al.  Prognostic Models in Medicine , 2001, Methods of Information in Medicine.

[10]  Fugee Tsung,et al.  Directional MEWMA Schemes for Multistage Process Monitoring and Diagnosis , 2008 .

[11]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[12]  Jay Lee,et al.  A novel method for machine performance degradation assessment based on fixed cycle features test , 2009 .

[13]  Huazhen Fang,et al.  Genetic adaptive state estimation with missing input/output data , 2010 .

[14]  Donald L. Simon,et al.  Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management , 2007 .

[15]  Andrew Kusiak,et al.  Models for monitoring wind farm power , 2009 .

[16]  Peter J. F. Lucas,et al.  Dynamic Bayesian networks as prognostic models for clinical patient management , 2008, J. Biomed. Informatics.

[17]  Keith Worden,et al.  Wind Turbine Structural Health Monitoring: A Short Investigation Based on SCADA Data , 2014 .

[18]  Dan Simon,et al.  Constrained Kalman filtering via density function truncation for turbofan engine health estimation , 2010, Int. J. Syst. Sci..

[19]  Omar El Sawy,et al.  Coordinating for Flexibility in e-Business Supply Chains , 2004, J. Manag. Inf. Syst..

[20]  Hui Zhang,et al.  Robust weighted H∞ filtering for networked systems with intermittent measurements of multiple sensors , 2011 .

[21]  B. Saha,et al.  Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques , 2008, 2008 IEEE Aerospace Conference.

[22]  Giridhar Tatavarty FINDING TEMPORAL ASSOCIATION RULES BETWEEN FREQUENT PATTERNS IN MULTIVARIATE TIME SERIES , 2006 .

[23]  W. Zhang,et al.  State Feedback H_∞Control for a Class of Nonlinear Stochastic Systems , 2009 .

[24]  Richard Donaldson,et al.  Integrating health management to enhance product support , 2008 .

[25]  Eduard Muljadi,et al.  Pitch-controlled variable-speed wind turbine generation , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[26]  Donghua Zhou,et al.  Network‐based robust fault detection with incomplete measurements , 2009 .

[27]  Miguel A. Sanz-Bobi,et al.  Failure Risk Indicators for a Maintenance Model Based on Observable Life of Industrial Components With an Application to Wind Turbines , 2013, IEEE Transactions on Reliability.

[28]  Lei Yang,et al.  Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems , 2012 .

[29]  Donghua Zhou,et al.  Network‐based fault detection for discrete‐time state‐delay systems: A new measurement model , 2008 .

[30]  M. J. Provost,et al.  The use of optimal estimation techniques in the analysis of gas turbines , 1994 .

[31]  Gang Niu,et al.  Machine condition prognosis based on sequential Monte Carlo method , 2010, Expert Syst. Appl..

[32]  Wenyu Zhao An Integrated Framework of Performance Assessment and Drivetrain Prognostics for Wind Turbines , 2014 .

[33]  Stefano Borgo,et al.  Foundations for a Core Ontology of Manufacturing , 2007, Ontologies.

[34]  K. Goebel,et al.  Distributed prognostics using wireless embedded devices , 2008, 2008 International Conference on Prognostics and Health Management.

[35]  Jianbo Yu,et al.  A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems , 2008, 2008 International Conference on Prognostics and Health Management.

[36]  Jay Lee,et al.  Fault detection in a network of similar machines using clustering approach , 2012 .

[37]  Yingning Qiu,et al.  Wind turbine SCADA alarm analysis for improving reliability , 2012 .

[38]  Desire L. Massart,et al.  Feature selection in principal component analysis of analytical data , 2002 .

[39]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[40]  Stefano Chessa,et al.  Evaluation of a Diagnosis Algorithm for Regular Structures , 2002, IEEE Trans. Computers.

[41]  Benoît Iung,et al.  Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system , 2008, Reliab. Eng. Syst. Saf..

[42]  Ümit Özgüner,et al.  Design of knowledge-rich hierarchical controllers for large functional systems , 1990, IEEE Trans. Syst. Man Cybern..

[43]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[44]  Jay Lee,et al.  An Integrated Framework of Drivetrain Degradation Assessment and Fault Localization for Offshore Wind Turbines , 2020 .

[45]  Abhinav Saxena,et al.  Damage propagation modeling for aircraft engine run-to-failure simulation , 2008, 2008 International Conference on Prognostics and Health Management.

[46]  Dan Simon,et al.  A comparison of filtering approaches for aircraft engine health estimation , 2008 .

[47]  Peter Matthews,et al.  Classification and Detection of Wind Turbine Pitch Faults Through SCADA Data Analysis , 2020, International Journal of Prognostics and Health Management.

[48]  A. Cipriano,et al.  Fault detection and isolation system design for omnidirectional soccer-playing robots , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[49]  Mark L. Krieg A Tutorial on Bayesian Belief Networks , 2001 .

[50]  Kai Goebel,et al.  Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework , 2009 .

[51]  Jay Lee,et al.  Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications , 2014 .

[52]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[53]  James Lam,et al.  Decentralized Robust Control for Nonlinear Large-Scale Systems with Similarity , 1999 .

[54]  Ali Cinar,et al.  Statistical monitoring of multistage, multiphase batch processes , 2002 .

[55]  Daniel W. C. Ho,et al.  Variance-constrained control for uncertain stochastic systems with missing measurements , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[56]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[57]  Bhaskar Saha,et al.  Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework , 2009, IEEE Transactions on Instrumentation and Measurement.

[58]  Jay Lee,et al.  Wind turbine performance assessment using multi-regime modeling approach , 2012 .

[59]  David Siegel,et al.  Prognostics and Health Assessment of a Multi-Regime System using a Residual Clustering Health Monitoring Approach , 2013 .

[60]  K.W. Przytula,et al.  An Implementation of Prognosis with Dynamic Bayesian Networks , 2008, 2008 IEEE Aerospace Conference.

[61]  E. J. Wiggelinkhuizen,et al.  Assessment of Condition Monitoring Techniques for Offshore Wind Farms , 2008 .

[62]  Bin Zhang,et al.  Rolling element bearing feature extraction and anomaly detection based on vibration monitoring , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[63]  Huazhen Fang,et al.  Kalman filter‐based adaptive control for networked systems with unknown parameters and randomly missing outputs , 2009 .

[64]  Lihui Zhou,et al.  Using SCADA Data Fusion by Swarm Intelligence for Wind Turbine Condition Monitoring , 2013, 2013 Fourth Global Congress on Intelligent Systems.

[65]  Kai Goebel,et al.  Comparison of prognostic algorithms for estimating remaining useful life of batteries , 2009 .

[66]  Marcos Eduardo Orchard,et al.  A Particle Filtering-based Framework for On-line Fault Diagnosis and Failure Prognosis , 2007 .

[67]  Alan A. Desrochers,et al.  Performance evaluation of automated manufacturing systems using generalized stochastic Petri nets , 1990, IEEE Trans. Robotics Autom..

[68]  Enrico Zio,et al.  Monte Carlo-based filtering for fatigue crack growth estimation , 2009 .

[69]  Donald L. Simon,et al.  Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics , 2003 .

[70]  Li Li,et al.  Decentralized robust control of uncertain Markov jump parameter systems via output feedback , 2006, 2006 American Control Conference.