An assessment of wide bandgap semiconductors for power devices

An advantage for some wide bandgap materials, that is often overlooked, is that the thermal coefficient of expansion (CTE) is better matched to the ceramics in use for packaging technology. It is shown that the optimal choice for uni-polar devices is clearly GaN. It is further shown that the future optimal choice for bipolar devices is C (diamond) owing to the large bandgap, high thermal conductivity, and large electron and hole mobilities. A new expression relating the critical electric field for breakdown in abrupt junctions to the material bandgap energy is derived and is further used to derive new expressions for specific on-resistance in power semiconductor devices. These new expressions are compared to the previous literature and the efficacy of specific power devices, such as heterojunction MOSFETs, using GaN are discussed.

[1]  S. Sze,et al.  AVALANCHE BREAKDOWN VOLTAGES OF ABRUPT AND LINEARLY GRADED p‐n JUNCTIONS IN Ge, Si, GaAs, AND GaP , 1966 .

[2]  R. Campbell,et al.  High Temperature Electronics. , 1971 .

[3]  A. Holmes-Siedle,et al.  Semiconductor Devices , 1976, 2018 International Semiconductor Conference (CAS).

[4]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[5]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[6]  E.S. Dettmer,et al.  Steady state thermal conductivity measurements of AlN and SiC substrate materials , 1989, Proceedings., 39th Electronic Components Conference.

[7]  James E. Morris Electronics packaging forum , 1990 .

[8]  M. Asif Khan,et al.  Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions , 1992 .

[9]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[10]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[11]  T. P. Chow,et al.  Wide bandgap compound semiconductors for superior high-voltage unipolar power devices , 1994 .

[12]  Steven T. Peake,et al.  Power semiconductor devices , 1995 .

[13]  C. Van Godbold,et al.  Novel designs in power modules , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[14]  Vladimir Dmitriev,et al.  ELECTRIC BREAKDOWN IN GAN P-N JUNCTIONS , 1996 .

[15]  K. V. Shenoy,et al.  Elevated temperature stability of GaAs digital integrated circuits , 1996, IEEE Electron Device Letters.

[16]  J. Hudgins,et al.  Thermal analysis of high-power modules , 1997 .

[17]  F. Patrick McCluskey,et al.  High Temperature Electronics , 1997 .

[18]  E. Kohn,et al.  Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs , 1999, IEEE Electron Device Letters.

[19]  A. P. Zhang,et al.  High voltage GaN Schottky rectifiers , 1999 .

[20]  P. Janke,et al.  High performance microwave power GaN/AlGaN MODFETs grown by RF-assisted MBE , 2000 .

[21]  Michael S. Shur,et al.  AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates , 2000 .

[22]  H. Degischer,et al.  AlSiC composite materials in IGBT power modules , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[23]  Michael S. Shur,et al.  AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates , 2000 .

[24]  A. Lunev,et al.  AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor , 2000, IEEE Electron Device Letters.

[25]  Umesh K. Mishra,et al.  Very-high power density AlGaN/GaN HEMTs , 2001 .

[26]  S. Catellani,et al.  Thermal and electrical ageing of DBC substrates , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[27]  Michael S. Shur,et al.  Si3N4/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors , 2001 .

[28]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[29]  Ilesanmi Adesida,et al.  AlGaN / GaN HEMTs on SiC with over 100 GHz fT and Low Microwave Noise , 2001 .

[30]  Ilesanmi Adesida,et al.  AlGaN/GaN HEMTs on SiC with over 100 GHz f/sub T/ and low microwave noise , 2001 .

[31]  Alex Q. Huang,et al.  The future of bipolar power transistors , 2001 .