A branch and bound algorithm for computing the best subset regression models
暂无分享,去创建一个
[1] Martin S. Ridout. An Improved Branch and Bound Algorithm for Feature Subset Selection , 1988 .
[2] D. M. Allen. Mean Square Error of Prediction as a Criterion for Selecting Variables , 1971 .
[3] C. Mallows. More comments on C p , 1995 .
[4] Alan J. Miller,et al. Least Squares Routines to Supplement Those of Gentleman , 1992 .
[5] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[6] Keinosuke Fukunaga,et al. A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.
[7] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[8] Alan J. Miller. Sélection of subsets of regression variables , 1984 .
[9] Robert W. Wilson,et al. Regressions by Leaps and Bounds , 2000, Technometrics.
[10] D. M. Smith,et al. All possible subset regressions using the QR decomposition , 1989 .
[11] Erricos John Kontoghiorghes,et al. Solving the Updated and Downdated Ordinary Linear Model on Massively Parallel Simd Systems , 1993, Parallel Algorithms Appl..
[12] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[13] E. L. Lawler,et al. Branch-and-Bound Methods: A Survey , 1966, Oper. Res..
[14] Erricos John Kontoghiorghes,et al. New Parallel Strategies for Block Updating the Qr Decomposition , 1995, Parallel Algorithms Appl..
[15] R. R. Hocking. Developments in linear regression methodology: 1959-1982 , 1983 .
[16] Sarah J. Roberts,et al. Algorithm AS 199: A Branch and Bound Algorithm for Determining the Optimal Feature Subset of Given Size , 1984 .
[17] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[18] Peter Winker. Optimization Heuristics in Econometrics : Applications of Threshold Accepting , 2000 .
[19] R. R. Hocking. The analysis and selection of variables in linear regression , 1976 .
[20] D. Edwards,et al. A fast model selection procedure for large families of models , 1987 .
[21] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[22] M. R. B. Clarke,et al. A Givens Algorithm for Moving from One Linear Model to Another Without Going Back to the Data , 1981 .
[23] Frieder Keller,et al. Variable Selection in Logistic Regression Models , 2004 .
[24] Erricos John Kontoghiorghes,et al. Parallel Strategies for Rank-k Updating of the QR Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[25] R. R. Hocking,et al. Selection of the Best Subset in Regression Analysis , 1967 .
[26] Erricos John Kontoghiorghes,et al. Parallel Reorthogonalization of the QR Decomposition After Deleting Columns , 1993, Parallel Comput..
[27] J. Goodnight. A Tutorial on the SWEEP Operator , 1979 .
[28] R. R. Hocking,et al. Computational Efficieucy in the Selection of Regression Variables , 1970 .
[29] Erricos John Kontoghiorghes,et al. Parallel Strategies for Computing the Orthogonal Factorizations Used in the Estimation of Econometric Models , 1999, Algorithmica.
[30] R. R. Hocking. Criteria for Selection of a Subset Regression: Which One Should Be Used? , 1972 .
[31] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[32] Stephen P. Boyd,et al. Branch and Bound Methods , 1987 .
[33] Erricos John Kontoghiorghes,et al. Parallel Algorithms for Linear Models: Numerical Methods and Estimation Problems , 2000 .
[34] Alan J. Miller. Correction to Algorithm as 274: Least Squares Routines to Supplement Those of Gentleman , 1994 .
[35] Erricos John Kontoghiorghes,et al. Parallel algorithms for computing all possible subset regression models using the QR decomposition , 2003, Parallel Comput..