Sparse Approximation by Linear Programming using an L1 Data-Fidelity Term
暂无分享,去创建一个
[1] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[2] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[3] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[4] Mila Nikolova,et al. Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..
[5] Martin Vetterli,et al. Wavelet footprints: theory, algorithms, and applications , 2003, IEEE Trans. Signal Process..
[6] Jean-Jacques Fuchs,et al. On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.
[7] Mila Nikolova,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[8] Pierre Vandergheynst,et al. Sparse decomposition over multi-component redundant dictionaries , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..
[9] J. Tropp. JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .
[10] E. Candès,et al. Error correction via linear programming , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[11] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[12] L. Granai. nonlinear approximation with redundant multi-component dictionaries , 2006 .
[13] Mila Nikolova,et al. Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..