Sparse Approximation by Linear Programming using an L1 Data-Fidelity Term

This paper studies the problem of sparse signal approximation over redundant dictionaries. Our attention is focused on the minimization of a cost function where the error is measured by using the L1 norm, giving thus less importance to outliers. We show a constructive equivalence between the proposed minimization problem and Linear Programming. A recovery condition is then provided and an example illustrates the use of such a technique for denoising.

[1]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[2]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[3]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[4]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[5]  Martin Vetterli,et al.  Wavelet footprints: theory, algorithms, and applications , 2003, IEEE Trans. Signal Process..

[6]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[7]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[8]  Pierre Vandergheynst,et al.  Sparse decomposition over multi-component redundant dictionaries , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[9]  J. Tropp JUST RELAX: CONVEX PROGRAMMING METHODS FOR SUBSET SELECTION AND SPARSE APPROXIMATION , 2004 .

[10]  E. Candès,et al.  Error correction via linear programming , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[11]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[12]  L. Granai nonlinear approximation with redundant multi-component dictionaries , 2006 .

[13]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..