Articulated Body tracking based on sequential belief propagation

Articulated Body tracking is a challenging problem in computer vision. In this paper, we present a modified sequential belief propagation method with multi-cue fusion based likelihood. The experiment result show that this method performs robust in complex environments.

[1]  Tony X. Han,et al.  Efficient Nonparametric Belief Propagation with Application to Articulated Body Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[3]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[5]  G. Hua,et al.  Multi-scale visual tracking by sequential belief propagation , 2004, CVPR 2004.

[6]  Katja Nummiaro A Color-based Particle Filter , 2002 .

[7]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[8]  Gang Hua,et al.  Tracking articulated body by dynamic Markov network , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Gary R. Bradski,et al.  A dynamic Bayesian network approach to multi-cue based visual tracking , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[10]  Tao Wang,et al.  A dynamic Bayesian network approach to multi-cue based visual tracking , 2004, ICPR 2004.

[11]  Michael Isard,et al.  PAMPAS: real-valued graphical models for computer vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  Pedro Larrañaga,et al.  An Introduction to Probabilistic Graphical Models , 2002, Estimation of Distribution Algorithms.

[13]  Thomas S. Huang,et al.  Weighted Bayesian Network for Visual Tracking , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[14]  Michael Isard,et al.  Nonparametric belief propagation , 2010, Commun. ACM.

[15]  Pushmeet Kohli,et al.  Measuring Uncertainty in Graph Cut Solutions - Efficiently Computing Min-marginal Energies Using Dynamic Graph Cuts , 2006, ECCV.