On the History of the Minimum Spanning Tree Problem

It is standard practice among authors discussing the minimum spanning tree problem to refer to the work of Kruskal(1956) and Prim (1957) as the sources of the problem and its first efficient solutions, despite the citation by both of Boruvka (1926) as a predecessor. In fact, there are several apparently independent sources and algorithmic solutions of the problem. They have appeared in Czechoslovakia, France, and Poland, going back to the beginning of this century. We shall explore and compare these works and their motivations, and relate them to the most recent advances on the minimum spanning tree problem.

[1]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[2]  R. Sokal,et al.  Principles of numerical taxonomy , 1965 .

[3]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[4]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[5]  Robert E. Tarjan,et al.  Linear Expected-Time Algorithms for Connectivity Problems , 1980, J. Algorithms.

[6]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[7]  Nicos Christofides,et al.  The Shortest Hamiltonian Chain of a Graph , 1970 .

[8]  Robert E. Osteen,et al.  Picture Skeletons Based on Eccentricities of Points of Minimum Spanning Trees , 1974, SIAM J. Comput..

[9]  Harold N. Gabow,et al.  Two Algorithms for Generating Weighted Spanning Trees in Order , 1977, SIAM J. Comput..

[10]  R. Prim Shortest connection networks and some generalizations , 1957 .

[11]  K. Florek,et al.  Sur la liaison et la division des points d'un ensemble fini , 1951 .

[12]  R. Gomory,et al.  Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem , 1964 .

[13]  L. Mcquitty Elementary Linkage Analysis for Isolating Orthogonal and Oblique Types and Typal Relevancies , 1957 .

[14]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[15]  F. James Rohlf,et al.  A Probabilistic Minimum Spanning Tree Algorithm , 1978, Inf. Process. Lett..

[16]  P. Rosenstiehl,et al.  INTELLIGENT GRAPHS: NETWORKS OF FINITE AUTOMATA CAPABLE OF SOLVING GRAPH PROBLEMS , 1972 .

[17]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[18]  E. Reingold,et al.  Combinatorial Algorithms: Theory and Practice , 1977 .

[19]  T. C. Hu Letter to the Editor---The Maximum Capacity Route Problem , 1961 .

[20]  Francis Y. L. Chin,et al.  Algorithms for Updating Minimal Spanning Trees , 1978, J. Comput. Syst. Sci..

[21]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[22]  Aaron Kershenbaum,et al.  Computing capacitated minimal spanning trees efficiently , 1974, Networks.

[23]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[24]  Philip M. Spira,et al.  Communication Complexity of Distributed Minimum Spanning Tree Algorithms , 1977, Berkeley Workshop.

[25]  G. J. S. Ross,et al.  Algorithm AS 13: Minimum Spanning Tree , 1969 .

[26]  J. Farris Methods for Computing Wagner Trees , 1970 .

[27]  E. N. Gilbert Random Minimal Trees , 1965 .

[28]  D. Welsh Kruskal's theorem for matroids , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.

[30]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[31]  C. W. Borrée Anzeiger , .

[32]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[33]  R. Kalaba ON SOME COMMUNICATION NETWORK PROBLEMS , 1959 .

[34]  Nelson H. F. Beebe,et al.  Annals of the History of Computing , 1984, SIGIR Forum.

[35]  F. Stillinger Physical Clusters, Surface Tension, and Critical Phenomena , 1967 .

[36]  A. Pierce Bibliography on Algorithms for Shortest Path, Shortest Spanning Tree, and Related Circuit Routing Problems (1956-1974) , 1975, Networks.

[37]  J. J. Brennan,et al.  Minimal spanning trees and partial sorting , 1982, Oper. Res. Lett..

[38]  R. G. Carpenter,et al.  The Cumulative Construction of Minimum Spanning Trees , 1971 .

[39]  L. R. Esau,et al.  On Teleprocessing System Design Part II: A Method for Approximating the Optimal Network , 1966, IBM Syst. J..

[40]  J. MacGregor Smith,et al.  STEINER TREES, STEINER CIRCUITS AND THE INTERFERENCE PROBLEM IN BUILDING DESIGN , 1979 .

[41]  K. Mani Chandy,et al.  The Design or Multipoint Linkages in a Teleprocessing Tree Network , 1972, IEEE Transactions on Computers.

[42]  C T Zahn Using the Minimum Spanning Tree to recognize dotted and dashed curves , 1973 .

[43]  R. EsauL.,et al.  On teleprocessing system design , 1966 .

[44]  R. V. Slyke,et al.  Computing minimum spanning trees efficiently , 1972, ACM Annual Conference.

[45]  Jon Louis Bentley,et al.  A Parallel Algorithm for Constructing Minimum Spanning Trees , 1980, J. Algorithms.

[46]  Toshihide Ibaraki,et al.  An Algorithm for Finding K Minimum Spanning Trees , 1981, SIAM J. Comput..

[47]  Thomas L. Magnanti,et al.  Deterministic network optimization: A bibliography , 1977, Networks.

[48]  Donald B. Johnson,et al.  Priority Queues with Update and Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[49]  R. N. Burns,et al.  A combinatorial ranking problem , 1976 .

[50]  Alex Karel Obruca Spanning Tree Manipulation and the Travelling Salesman Problem , 1968, Comput. J..

[51]  Arnold Weinberger,et al.  Formal Procedures for Connecting Terminals with a Minimum Total Wire Length , 1957, JACM.

[52]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[53]  Richard M. Van Slyke,et al.  Network reliability analysis: Part I , 1971, Networks.

[54]  Jeffrey D. Ullman,et al.  Set Merging Algorithms , 1973, SIAM J. Comput..

[55]  L FredmanMichael,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987 .

[56]  Jakob Krarup,et al.  Improvements of the Held—Karp algorithm for the symmetric traveling-salesman problem , 1974, Math. Program..

[57]  Edsger Dijkstra,et al.  Some theorems on spanning subtrees of a graph : (proceedings knaw series a, _6_3(1960), nr 2, indagationes mathematicae, _2_2(1960), p 196-199) , 1960 .

[58]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[59]  J. H. Warren,et al.  Improved algorithm for the construction of minimal spanning trees , 1972 .

[60]  E. W. Solomon A Comprehensive Program for Network Problems , 1960, Comput. J..

[61]  Richard C. T. Lee,et al.  A Triangulation Method for the Sequential Mapping of Points from N-Space to Two-Space , 1977, IEEE Transactions on Computers.

[62]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[63]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[64]  Louis L. McQuitty,et al.  Hierarchical Syndrome Analysis1 , 1960 .

[65]  P. Sneath The application of computers to taxonomy. , 1957, Journal of general microbiology.

[66]  Charles T. Zahn,et al.  An Algorithm for Noisy Template Matching , 1974, IFIP Congress.

[67]  G. H. Bradley Survey of Deterministic Networks , 1975 .

[68]  V. Whitney Algorithm 422: minimal spanning tree [H] , 1972, CACM.

[69]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[70]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[71]  D. Gale Optimal assignments in an ordered set: An application of matroid theory , 1968 .

[72]  A. Pan,et al.  On Finding and Updating Spanning Trees and Shortest Paths , 1975, SIAM J. Comput..

[73]  F. Glover,et al.  Finding Minimum Spanning Trees with a Fixed Number of Links at a Node , 1975 .

[74]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[75]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[76]  Robert Kalaba GRAPH THEORY AND AUTOMATIC CONTROL , 1963 .

[77]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[78]  Ronald L. Graham,et al.  Steiner Trees for Ladders , 1978 .

[79]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .