Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension

Stressed ferroelectric nanoparticles, less than 10 nm in diameter, are investigated in a nonpolar fluid. Measuring ferroelectric properties of the smallest achieved BaTiO${}_{3}$ ferroelectric nanoparticles allows for the determination of dipole moment and spontaneous polarization as a function of size and concentration; the results are significantly greater than in bulk BaTiO${}_{3}$. This is achieved by using a direct measurement of the displacement current density and either integrating over half a period or fitting the experimental results using the derivative of the Langevin function.

[1]  Jonathan V Selinger,et al.  Theory of ferroelectric nanoparticles in nematic liquid crystals. , 2009, Physical review letters.

[2]  Wang,et al.  Phenomenological study of the size effect on phase transitions in ferroelectric particles. , 1994, Physical review. B, Condensed matter.

[3]  Phase transitions induced by confinement of ferroic nanoparticles , 2007, cond-mat/0703652.

[4]  David A. Payne,et al.  Nanocrystalline barium titanate: Evidence for the absence of ferroelectricity in sol‐gel derived thin‐layer capacitors , 1993 .

[5]  Hari M. Atkuri,et al.  Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids , 2009 .

[6]  R. Waser,et al.  Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects , 2001, cond-mat/0111218.

[7]  E. Moreau,et al.  Space charge density in dielectric and conductive liquids flowing through a glass pipe , 2001 .

[8]  S. Wada,et al.  Size and temperature induced phase transition behaviors of barium titanate nanoparticles , 2006 .

[9]  P. Sheng,et al.  Giant electrorheological fluid comprising nanoparticles: Carbon nanotube composite , 2010 .

[10]  P. P. Banerjee,et al.  Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. , 2010, Optics express.

[11]  Anatoliy Glushchenko,et al.  Orientational coupling amplification in ferroelectric nematic colloids. , 2006, Physical review letters.

[12]  Victor Yu. Reshetnyak,et al.  Ferroelectric nematic suspension , 2003 .

[13]  W. A. Bullough,et al.  The structure of smart fluids , 1992, Nature.

[14]  A. Glushchenko,et al.  Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid-crystalline mixture , 2009 .

[15]  Malgosia Kaczmarek,et al.  Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals , 2007 .

[16]  Yudin,et al.  Intrinsic ferroelectric coercive field , 2000, Physical review letters.

[17]  Nader Engheta,et al.  Taming light at the nanoscale , 2010 .

[18]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[19]  D H Werner,et al.  Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. , 2006, Optics letters.

[20]  P. Sheng,et al.  The giant electrorheological effect in suspensions of nanoparticles , 2003, Nature materials.

[21]  G Cook,et al.  Nanoparticle doped organic-inorganic hybrid photorefractives. , 2008, Optics express.

[22]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[23]  Hisao Suzuki,et al.  Size Effect for Barium Titanate Nano-particles [Translated]† , 2004 .

[24]  Matteo Rini,et al.  Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. , 2004, Optics letters.

[25]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[26]  Zhe Zhao,et al.  Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics , 2004 .

[27]  A. Glushchenko,et al.  Harvesting Single Ferroelectric Domain Stressed Nanoparticles for Optical and Ferroic Applications , 2010 .

[28]  A. Oldenburg,et al.  Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. , 2011, Small.

[29]  Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle. , 2005, Physical review letters.