A GSVD formulation of a domain decomposition method for planar eigenvalue problems

In this article, we present a modification of the domain decomposition method of Descloux and Tolley for planar eigenvalue problems. Instead of formulating a generalized eigenvalue problem, our method is based on the generalized singular value decomposition. This approach is robust and at the same time highly accurate. Furthermore, we give an improved convergence analysis based on results from complex approximation theory. Several examples show the effectiveness of our method.

[1]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[2]  J. Walsh,et al.  Interpolation and approximation , 1935 .

[3]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[4]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[5]  G. Still,et al.  Computable bounds for eigenvalues and eigenfunctions of elliptic differential operators , 1988 .

[6]  On density and approximation properties of special solutions of the Helmholtz equation , 1992 .

[7]  Stanley C. Eisenstat On the Rate of Convergence of the Bergman–Vekua Method for the Numerical Solution of Elliptic Boundary Value Problems , 1974 .

[8]  Alan B. Tayler,et al.  New methods for solving elliptic equations , 1969 .

[9]  Jens Markus Melenk,et al.  Operator adapted spectral element methods I: harmonic and generalized harmonic polynomials , 1999, Numerische Mathematik.

[10]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[11]  N. L. Schryer Constructive Approximation of Solutions to Linear Elliptic Boundary Value Problems , 1972 .

[12]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[13]  David L. Webb,et al.  Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .

[14]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[15]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[16]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[17]  C. B. Moler,et al.  Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .

[18]  J. Descloux,et al.  An accurate algorithm for computing the eigenvalues of a polygonal membrane , 1983 .

[19]  V. G. Sigillito,et al.  Bounding Eigenvalues of Elliptic Operators , 1978 .

[20]  Lloyd N. Trefethen,et al.  Green's Functions for Multiply Connected Domains via Conformal Mapping , 1999, SIAM Rev..

[21]  J. Kuttler,et al.  Remarks on a Stekloff Eigenvalue Problem , 1972 .

[22]  G. W. Stewart Afternotes Goes to Graduates School , 1998 .

[23]  D. Gaier,et al.  Lectures on complex approximation , 1987 .

[24]  Lloyd N. Trefethen,et al.  An Extension of MATLAB to Continuous Functions and Operators , 2004, SIAM J. Sci. Comput..

[25]  Peter Henrici,et al.  A survey of I. N. Vekua's theory of elliptic partial differential equations with analytic coefficients , 1957 .

[26]  Tobin A. Driscoll,et al.  Eigenmodes of Isospectral Drums , 1997, SIAM Rev..

[27]  Timo Betcke The Generalized Singular Value Decomposition and the Method of Particular Solutions , 2008, SIAM J. Sci. Comput..

[28]  Lloyd N. Trefethen,et al.  Computed eigenmodes of planar regions , 2005 .

[29]  Carl de Boor An alternative approach to (the teaching of) rank, basis, and dimension , 1991 .