Micropolar Shells as Two-dimensional Generalized Continua Models

Using the direct approach the basic relations of the nonlinear micropo- lar shell theory are considered. Within the framework of this theory the shell can be considered as a deformable surface with attached three unit orthogonal vectors, so-called directors. In other words the micropolar shell is a two-dimensional (2D) Cosserat continuum or micropolar continuum. Each point of the micropolar shell has three translational and three rotational degrees of freedom as in the rigid body dynamics. In this theory the rotations are kinematically independent on translations. The interaction between of any two parts of the shell is described by the forces and moments only. So at the shell boundary six boundary conditions have to be given. In contrast to Kirchhoff-Love or Reissner's models of shells the drilling moment acting on the shell surface can be taken into account. In the paper we derive the equilibrium equations of the shell theory using the principle of virtual work. The strain measures are introduced on the base of the principle of frame indifference. The boundary-value static and dynamic problems are formulated in Lagrangian and Eulerian coordinates. In addition, some variational principles are presented. For the general constitutive equations we formulate some constitutive restrictions, for example, the Coleman-Noll inequality, the Hadamard inequality, etc. Finally, we discuss the equilibrium of shells made of materials un-

[1]  R. James,et al.  A theory of thin films of martensitic materials with applications to microactuators , 1999 .

[2]  Holm Altenbach,et al.  Mechanics of Generalized Continua , 2010 .

[3]  Z. Q. Li,et al.  The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension , 2002 .

[4]  G. Fichera Existence Theorems in Elasticity , 1973 .

[5]  Wojciech Pietraszkiewicz,et al.  The Nonlinear Theory of Elastic Shells with Phase Transitions , 2004 .

[6]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[7]  J. G. Simmonds,et al.  The Nonlinear Theory of Elastic Shells , 1998 .

[8]  Andrei V. Metrikine,et al.  Mechanics of generalized continua : one hundred years after the Cosserats , 2010 .

[9]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[10]  Pressurized Shape Memory Thin Films , 2000 .

[11]  W. Nowacki,et al.  Theory of asymmetric elasticity , 1986 .

[12]  L. Zubov Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies , 2001 .

[13]  Victor A. Eremeyev,et al.  Extended non‐linear relations of elastic shells undergoing phase transitions , 2007 .

[14]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[15]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[16]  M. J. Grinfel'd,et al.  Thermodynamic methods in the theory of heterogeneous systems , 1991 .

[17]  J. G. Simmonds,et al.  Nonlinear Elastic Shell Theory , 1983 .

[18]  W. Pietraszkiewicz,et al.  Local Symmetry Group in the General Theory of Elastic Shells , 2006 .

[19]  James K. Knowles,et al.  Evolution of Phase Transitions: A Continuum Theory , 2006 .

[20]  Victor A. Eremeyev,et al.  Acceleration waves in micropolar elastic media , 2005 .

[21]  W. Pietraszkiewicz,et al.  On shear correction factors in the non-linear theory of elastic shells , 2010 .

[22]  Pavel A. Zhilin,et al.  Mechanics of deformable directed surfaces , 1976 .

[23]  W Schiehlen,et al.  Analytical Mechanics. Foundations of Engineering Mechanics Series , 2004 .

[24]  Clifford Ambrose Truesdell,et al.  Exact theory of stress and strain in rods and shells , 1957 .

[25]  Yongjun He,et al.  Rate-dependent domain spacing in a stretched NiTi strip , 2010 .

[26]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[27]  W. C. Schnobrich Thin Shell Structures , 1985 .

[28]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[29]  A. Boulbitch Equations of heterophase equilibrium of a biomembrane , 1999 .

[30]  G. Herrmann,et al.  Mechanics in Material Space: with Applications to Defect and Fracture Mechanics , 2012 .

[31]  A. Eringen,et al.  Microcontinuum Field Theories II Fluent Media , 1999 .

[32]  W. Huang,et al.  Thin Film Shape Memory Alloys: Fundamentals and Device Applications , 2009 .

[33]  Victor A. Eremeyev,et al.  On vectorially parameterized natural strain measures of the non-linear Cosserat continuum , 2009 .

[34]  Victor A. Eremeyev,et al.  Phase transitions in thermoelastic and thermoviscoelastic shells , 2008 .

[35]  On some constitutive equations for micropolar plates , 2010 .

[36]  H. Altenbach,et al.  Acceleration waves and ellipticity in thermoelastic micropolar media , 2010 .

[37]  Qingping Sun,et al.  Scaling relationship on macroscopic helical domains in NiTi tubes , 2009 .

[38]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[39]  L. Zubov,et al.  On constitutive inequalities in nonlinear theory of elastic shells , 2007 .

[40]  H. J. Sauer,et al.  Engineering thermodynamics, 2nd Ed , 1985 .

[41]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[42]  M. De Handbuch der Physik , 1957 .

[43]  A. Cemal Eringen,et al.  Foundations and solids , 1999 .

[44]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[45]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[46]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[47]  D. Steigmann,et al.  Coexistent Fluid-Phase Equilibria in Biomembranes with Bending Elasticity , 2008 .

[48]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[49]  Y. He,et al.  Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates , 2010 .

[50]  W. Pietraszkiewicz Finite rotations and Lagrangean description in the non-linear theory of shells , 1979 .

[51]  Victor A. Eremeyev,et al.  On natural strain measures of the non-linear micropolar continuum , 2009 .

[52]  Gérard A. Maugin,et al.  Numerical Simulation of Waves and Fronts in Inhomogeneous Solids , 2008 .

[53]  Gérard A. Maugin,et al.  A Historical Perspective of Generalized Continuum Mechanics , 2010 .

[54]  Liping Liu THEORY OF ELASTICITY , 2012 .