Kinetic characterization of myoglobins from vertebrates with vastly different body temperatures.

[1]  Henry Eyring,et al.  The kinetic basis of molecular biology , 1954 .

[2]  A. Riggs,et al.  SULFHYDRYL GROUPS AND THE STRUCTURE OF HEMOGLOBIN , 1956, The Journal of general physiology.

[3]  E. Antonini,et al.  Oxygen Equilibrium of Hæmoglobin from Thunnus thynnus , 1960, Nature.

[4]  M. Avron,et al.  The enzymatic reduction of ferrihemoglobin. I. The reduction of ferrihemoglobin in red blood cells and hemolysates. , 1967, Biochimica et biophysica acta.

[5]  J. Wittenberg,et al.  Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. , 1970, Physiological reviews.

[6]  Kenneth D. Lawson,et al.  Warm-Bodied Fish , 1971 .

[7]  E. Lattman,et al.  Structure of yellow fin tuna metmyoglobin at 6A resolution. , 1971, Journal of molecular biology.

[8]  T. Takano,et al.  Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. , 1977, Journal of molecular biology.

[9]  G. Irace,et al.  Amino acid composition and physico-chemical properties of bluefin tuna (Thunnus thynnus) myoglobin. , 1978, Comparative biochemistry and physiology. B, Comparative biochemistry.

[10]  S. Phillips,et al.  Structure and refinement of oxymyoglobin at 1.6 A resolution. , 1980, Journal of molecular biology.

[11]  J. Silvius,et al.  Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes. , 1981, Journal of theoretical biology.

[12]  B. Wittenberg,et al.  Preparation of myoglobins. , 1981, Methods in enzymology.

[13]  F. G. Carey,et al.  One why of the warmth of warm-bodied fish. , 1981, The American journal of physiology.

[14]  J. Gysi,et al.  Myoglobin in the heart tissue of fishes lacking hemoglobin. , 1985, Comparative biochemistry and physiology. A, Comparative physiology.

[15]  D. Livingston,et al.  Myoglobin interspecies structural differences: effects on autoxidation and oxygenation. , 1986, Archives of biochemistry and biophysics.

[16]  B. Sidell,et al.  Temperature affects the diffusion of small molecules through cytosol of fish muscle. , 1987, The Journal of experimental biology.

[17]  I. Johnston,et al.  Biochemical Correlations of Power Development and Metabolic Fuel Preferenda in Fish Hearts , 1987, Physiological Zoology.

[18]  Activation parameters for ligand escape from myoglobin proteins at room temperature , 1990 .

[19]  Thermodynamic study of protein dynamic structure in the oxygen binding reaction of myoglobin. , 1990, The Journal of biological chemistry.

[20]  J. Fratantoni,et al.  Consequences of chemical modifications on the free radical reactions of human hemoglobin. , 1992, Archives of biochemistry and biophysics.

[21]  M. Przybylska,et al.  1.70 A resolution structure of myoglobin from yellowfin tuna. An example of a myoglobin lacking the D helix. , 1994, Acta crystallographica. Section D, Biological crystallography.

[22]  S. Boxer,et al.  Anatomy and dynamics of a ligand-binding pathway in myoglobin: the roles of residues 45, 60, 64, and 68. , 1994, Biochemistry.

[23]  The D-helix in myoglobin and in the beta subunit of hemoglobin is required for the retention of heme. , 1995, Biochemistry.

[24]  M. Nardini,et al.  Reptile heme protein structure: X-ray crystallographic study of the aquo-met and cyano-met derivatives of the loggerhead sea turtle (Caretta caretta) myoglobin at 2.0 A resolution. , 1995, Journal of molecular biology.

[25]  R. Cashon,et al.  Reaction of human hemoglobin HbA0 and two cross-linked derivatives with hydrogen peroxide: differential behavior of the ferryl intermediate. , 1995, Archives of biochemistry and biophysics.