Enabling database-aware storage with OSD

The ANSI object-based storage device (OSD) standard is a major step toward enabling explicit application-awareness in storage systems behind a standard, fully- interoperable interface [3]. In this paper, we explore a particular flavor of application-awareness, that of database applications. We describe the design and implementation of a database-aware storage system that uses the OSD interface not only as a means to access data, but also to permit explicit communication between the application and the storage system. This communication is significant, as it enables our storage system to transparently optimize data placement and request scheduling. We demonstrate that OSD makes it practical to improve storage performance in these ways without exposing proprietary disk drive parameters to application code, and without labor-intensive, fragile parameter measurement.

[1]  Andrea C. Arpaci-Dusseau,et al.  Proceedings of the 2002 Usenix Annual Technical Conference Bridging the Information Gap in Storage Protocol Stacks , 2022 .

[2]  Joel H. Saltz,et al.  Active disks: programming model, algorithms and evaluation , 1998, ASPLOS VIII.

[3]  Gregory R. Ganger,et al.  Blurring the Line Between Oses and Storage Devices (CMU-CS-01-166) , 2001 .

[4]  Jim Zelenka,et al.  A cost-effective, high-bandwidth storage architecture , 1998, ASPLOS VIII.

[5]  Yale N. Patt,et al.  On-line extraction of SCSI disk drive parameters , 1995, SIGMETRICS '95/PERFORMANCE '95.

[6]  Christos Faloutsos,et al.  Data mining on an OLTP system (nearly) for free , 2000, SIGMOD '00.

[7]  Gregory R. Ganger,et al.  Track-Aligned Extents: Matching Access Patterns to Disk Drive Characteristics , 2002, FAST.

[8]  Rodney Van Meter,et al.  SLEDs: Storage Latency Estimation Descriptors , 1997 .

[9]  Anastasia Ailamaki,et al.  Clotho: Decoupling memory page layout from storage organization , 2004, VLDB.

[10]  Babak Falsafi,et al.  DBmbench: fast and accurate database workload representation on modern microarchitecture , 2005, CASCON.

[11]  Setrag Khoshafian,et al.  A decomposition storage model , 1985, SIGMOD Conference.

[12]  Gregory R. Ganger,et al.  Automated Disk Drive Characterization , 1999 .

[13]  Anastasia Ailamaki,et al.  Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks , 2004, FAST.

[14]  David Hung-Chang Du,et al.  QoS provisioning framework for an OSD-based storage system , 2005, 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST'05).

[15]  Remzi H. Arpaci-Dusseau,et al.  Microbenchmark-based Extraction of Local and Global Disk Characteristics , 1999 .

[16]  Anastasia Ailamaki,et al.  Lachesis: Robust Database Storage Management Based on Device-specific Performance Characteristics , 2003, VLDB.

[17]  Gregory R. Ganger,et al.  Freeblock Scheduling Outside of Disk Firmware , 2002, FAST.

[18]  Kanishk Jain Object-based Storage , 2022 .

[19]  Andrea C. Arpaci-Dusseau,et al.  Semantically-Smart Disk Systems , 2003, FAST.

[20]  Mahadev Satyanarayanan,et al.  Diamond: A Storage Architecture for Early Discard in Interactive Search , 2004, FAST.

[21]  Michael Stonebraker,et al.  C-Store: A Column-oriented DBMS , 2005, VLDB.

[22]  Hai Jin,et al.  Active Disks: Programming Model, Algorithms and Evaluation , 2002 .

[23]  Raghu Ramakrishnan,et al.  Database Management Systems , 1976 .

[24]  David J. DeWitt,et al.  A case for fractured mirrors , 2003, The VLDB Journal.

[25]  Andrea C. Arpaci-Dusseau,et al.  Database-aware semantically-smart storage , 2005, FAST'05.