A ground state potential energy surface for H2 using Monte Carlo methods.

Using variational Monte Carlo and a simple explicitly correlated wave function we have computed the Born-Oppenheimer energy of the H2 ground state (X 1Sigmag+) at 24 internuclear distances. We have also calculated the diagonal correction to the Born-Oppenheimer approximation and the lowest-order relativistic corrections at each distance using variational Monte Carlo techniques. The nonadiabatic values are evaluated from numerical derivatives of the wave function with respect to the nuclear coordinates. With this potential energy surface we have computed several of the lowest vibrational-rotational energies for this system. Our results are in good agreement with the best values found in the literature.

[1]  D. Griffiths Introduction to Quantum Mechanics , 2016 .

[2]  N. Umezawa,et al.  Transcorrelated method for electronic systems coupled with variational Monte Carlo calculation , 2003 .

[3]  M. Caffarel,et al.  Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces , 2003, physics/0310035.

[4]  William A. Lester,et al.  Recent Advances in Quantum Monte Carlo Methods , 1997 .

[5]  W. Kutzelnigg,et al.  Accurate adiabatic correction for the hydrogen molecule using the Born-Handy formula , 1997 .

[6]  N. Handy,et al.  The adiabatic approximation , 1996 .

[7]  L. Wolniewicz NONADIABATIC ENERGIES OF THE GROUND STATE OF THE HYDROGEN MOLECULE , 1995 .

[8]  Kenny,et al.  Relativistic corrections to atomic energies from quantum Monte Carlo calculations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  L. Wolniewicz,et al.  Relativistic energies of the ground state of the hydrogen molecule , 1993 .

[10]  Wl,et al.  Improved theoretical dissociation energy and ionization potential for the ground state of the hydrogen molecule , 1993 .

[11]  J. D. Morgan,et al.  Guiding-function optimization in biased-selection Monte Carlo calculations , 1992 .

[12]  W. Lester,et al.  Correlated sampling of Monte Carlo derivatives with iterative‐fixed sampling , 1992 .

[13]  R. Coldwell,et al.  Calculating atomic and molecular properties using Variational Monte Carlo methods , 1992 .

[14]  J. D. Morgan,et al.  Monte Carlo eigenvalue and variance estimates from several functional optimizations , 1991 .

[15]  Robert J. Le Roy,et al.  Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen , 1987 .

[16]  H. Schaefer,et al.  The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects , 1986 .

[17]  H. Monkhorst,et al.  New Born–Oppenheimer potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule , 1986 .

[18]  L. Wolniewicz The X 1Σ+g state vibration‐rotational energies of the H2, HD, and D2 molecules , 1983 .

[19]  D. M. Bishop,et al.  Rigorous theoretical investigation of the ground state of H/sub 2/ , 1978 .

[20]  D. M. Bishop,et al.  Vibrational spacings for H2 +, D2 + and H2 , 1973 .

[21]  R. Bernstein,et al.  DISSOCIATION ENERGY AND VIBRATIONAL TERMS OF GROUND-STATE (X ¹$Sigma$/ sub g/$sup +$) HYDROGEN. , 1968 .

[22]  W. Kołos,et al.  Improved Theoretical Ground‐State Energy of the Hydrogen Molecule , 1968 .

[23]  L. Wolniewicz Vibrational—Rotational Study of the Electronic Ground State of the Hydrogen Molecule , 1966 .

[24]  L. Wolniewicz,et al.  Accurate Computation of Vibronic Energies and of Some Expectation Values for H2, D2, and T2 , 1964 .

[25]  L. Wolniewicz,et al.  Accurate Adiabatic Treatment of the Ground State of the Hydrogen Molecule , 1964 .

[26]  W. Kołos,et al.  Nonadiabatic Theory for Diatomic Molecules and Its Application to the Hydrogen Molecule , 1963 .

[27]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[28]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[29]  E. M. Greenawalt,et al.  The computation of nuclear motion and mass polarization adiabatic energy corrections for several states of the hydrogen molecule , 1977 .