A Recurrent Missense Variant in AP2M1 Impairs Clathrin-Mediated Endocytosis and Causes Developmental and Epileptic Encephalopathy.

Kenneth D. Mandl | Allison P. Heath | Eric Marsh | Holger Lerche | Annapurna Poduri | Ulrich Stephani | Renzo Guerrini | Paul Avillach | Sek Won Kong | Sawona Biswas | Patrick May | Peter White | Christel Depienne | Pasquale Striano | Roland Krause | Allison Heath | Hiltrud Muhle | Joel Hirschhorn | Aarno Palotie | Volker Haucke | Carla Marini | Ian Krantz | Federico Zara | Stéphanie Baulac | Colin A. Ellis | Deanne Taylor | Felix Rosenow | Johanna Jähn | Batsal Devkota | Ingo Helbig | Judson Kilbourn | Barbara Hallinan | Rudi Balling | Shiva Ganesan | In-Hee Lee | Oded Shor | Felix Benninger | I. Krantz | P. May | J. Hirschhorn | R. Krause | K. Mandl | R. Balling | S. Kong | A. Palotie | P. Striano | In-Hee Lee | S. Sisodiya | U. Stephani | H. Lerche | F. Rosenow | J. Serratosa | C. Depienne | F. Zara | B. Devkota | Manuela Pendziwiat | H. Muhle | R. Møller | Y. Weber | I. Helbig | P. Avillach | E. Marsh | V. Komarek | K. Štěrbová | V. Haucke | H. Hjalgrim | K. Sund | K. Klein | R. Guerrini | A. Poduri | D. Craiu | A. Suls | P. de Jonghe | K. Helbig | P. White | D. Shinde | A. Lehesjoki | K. Selmer | N. Barišić | S. Baulac | H. Caglayan | D. Hoffman-Zacharska | J. Jähn | E. Leguern | J. Lemke | T. Linnankivi | C. Marini | T. Talvik | S. von Spiczak | S. Weckhuysen | S. Schubert-Bast | Sha Tang | Dana Craiu | Sanjay Sisodiya | Sawona Biswas | Manuela Pendziwiat | Karl Martin Klein | Helle Hjalgrim | Arvid Suls | Peter De Jonghe | Sarah Weckhuysen | Susanne Schubert-Bast | Johannes R. Lemke | F. Benninger | Trine B. Hammer | T. López-Hernández | O. Shor | Peter D. Galer | S. Ganesan | Annika Rademacher | Nadja Hümpfer | N. Schwarz | Simone Seiffert | J. Peeden | Joseph J Shen | Lacey Smith | B. Koeleman | D. Pal | Anna Bartels | F. Bourgeois | T. Glauser | B. Hallinan | J. Kilbourn | Deanne M. Taylor | Yvonne G. Weber | Rikke S. Møller | Niklas Schwarz | Sha Tang | Dorota Hoffman-Zacharska | Vladimir Komarek | Anna-Elina Lehesjoki | Peter Galer | Sarah von Spiczak | Eric Leguern | Deepali N. Shinde | Tarja Linnankivi | Tania Lopez-Hernandez | Florence Bourgeois | Tiina Talvik | Nina Barisic | Annika Rademacher | Nadja Hümpfer | Simone Seiffert | Joseph Peeden | Joseph Shen | Katalin Štěrbová | Trine Bjørg Hammer | Lacey Smith | Katherine L. Helbig | Hande Caglayan | Bobby P.C. Koeleman | Deb K. Pal | Kaja Selmer | Jose M. Serratosa | Anna Bartels | Tracy Glauser | Kristen Sund | C. Ellis | Joseph J. Shen | V. Komárek | Barbara Hallinan | A. Rademacher | T. Hammer | Oded Shor | In‐Hee Lee | Nadja Hümpfer

[1]  H. Mefford,et al.  Genetic literacy series: Primer part 2—Paradigm shifts in epilepsy genetics , 2018, Epilepsia.

[2]  Amanda S. Lindy,et al.  Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders , 2018, Epilepsia.

[3]  U. Stephani,et al.  Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. , 2018, American journal of human genetics.

[4]  Joshua C. Denny,et al.  Phenotype risk scores identify patients with unrecognized Mendelian disease patterns , 2018, Science.

[5]  François Dubeau,et al.  High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. , 2017, American journal of human genetics.

[6]  I. Scheffer,et al.  De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. , 2017, American journal of human genetics.

[7]  I. Scheffer,et al.  DNM1 encephalopathy , 2017, Neurology.

[8]  Ingo Helbig,et al.  Advancing the phenome alongside the genome in epilepsy studies , 2017, Neurology.

[9]  Frank Noé,et al.  Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission , 2017, Nature Communications.

[10]  L. Lagae,et al.  Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders , 2017, Brain : a journal of neurology.

[11]  T. Maritzen,et al.  Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration , 2017, Nature Communications.

[12]  M. Daly,et al.  De novo variants in neurodevelopmental disorders with epilepsy , 2018, Nature Genetics.

[13]  Edouard Hirsch,et al.  ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[14]  J. H. Cross,et al.  Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[15]  Michael R. Johnson,et al.  Erratum: De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies (American Journal of Human Genetics (2014) 95(4) (360–370)(S0002929714003838)(10.1016/j.ajhg.2014.08.013)) , 2017 .

[16]  Stephanie J. Spielman,et al.  Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2 , 2017, The Journal of cell biology.

[17]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[18]  Sitao Wu,et al.  Candidate-gene criteria for clinical reporting: diagnostic exome sequencing identifies altered candidate genes among 8% of patients with undiagnosed diseases , 2016, Genetics in Medicine.

[19]  Michael R. Johnson,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[20]  Ahmad N. Abou Tayoun,et al.  Understanding Genotypes and Phenotypes in Epileptic Encephalopathies , 2016, Molecular Syndromology.

[21]  G. Carvill,et al.  Pitfalls in genetic testing: the story of missed SCN1A mutations , 2016, Molecular genetics & genomic medicine.

[22]  P. Striano,et al.  STXBP1 encephalopathy , 2016, Neurology.

[23]  I. Scheffer,et al.  The genetic landscape of the epileptic encephalopathies of infancy and childhood , 2016, The Lancet Neurology.

[24]  I. Helbig,et al.  Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy , 2016, Genetics in Medicine.

[25]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[26]  Morad Ansari,et al.  Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families , 2015, Nature Genetics.

[27]  R. Froemke Plasticity of cortical excitatory-inhibitory balance. , 2015, Annual review of neuroscience.

[28]  Xiang Li,et al.  Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions , 2014, Genetics in Medicine.

[29]  Rafael Najmanovich,et al.  ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability , 2015, Nucleic Acids Res..

[30]  Lin Gao,et al.  HPOSim: An R Package for Phenotypic Similarity Measure and Enrichment Analysis Based on the Human Phenotype Ontology , 2015, PloS one.

[31]  J. Roach,et al.  Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes , 2014, Nature Genetics.

[32]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[33]  Alexander M. Walter,et al.  Clathrin/AP-2 Mediate Synaptic Vesicle Reformation from Endosome-like Vacuoles but Are Not Essential for Membrane Retrieval at Central Synapses , 2014, Neuron.

[34]  Holger Lerche,et al.  De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. , 2013, American journal of human genetics.

[35]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[36]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[37]  Frank Noé,et al.  Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate , 2013, Nature.

[38]  Pietro De Camilli,et al.  Synaptic vesicle endocytosis. , 2012, Cold Spring Harbor perspectives in biology.

[39]  P. Evans,et al.  A Large-Scale Conformational Change Couples Membrane Recruitment to Cargo Binding in the AP2 Clathrin Adaptor Complex , 2010, Cell.

[40]  Marcel H. Schulz,et al.  Clinical diagnostics in human genetics with semantic similarity searches in ontologies. , 2009, American journal of human genetics.

[41]  J. Dittman,et al.  Molecular circuitry of endocytosis at nerve terminals. , 2009, Annual review of cell and developmental biology.

[42]  Phillip W. Lord,et al.  Semantic Similarity in Biomedical Ontologies , 2009, PLoS Comput. Biol..

[43]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[44]  Thomas Lengauer,et al.  A new measure for functional similarity of gene products based on Gene Ontology , 2006, BMC Bioinformatics.

[45]  J. Bonifacino,et al.  Clathrin Adaptor AP-2 Is Essential for Early Embryonal Development , 2005, Molecular and Cellular Biology.

[46]  Zhen Yan,et al.  Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[48]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[49]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.