Facial expression recognition using Local Directional Pattern (LDP)

A robust face descriptor is an essential component for a good facial expression recognition system. In this paper, we analyze the performance of a new feature descriptor, Local Directional Pattern (LDP), for the representation of facial expressions. LDP features are obtained by computing the edge response values in all eight directions at each pixel position and then a code is generated according to the relative magnitude's strength. Thus each expression is represented as a distribution of LDP codes. Different machine learning techniques are compared using Cohn-Kanade facial expression database for classification. Extensive experiments explicate the superiority of the proposed LDP based descriptor over other existing well known descriptors.

[1]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  Hartmut Neven,et al.  Online facial expression recognition based on personalized galleries , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[4]  Fernando De la Torre,et al.  Facial Expression Analysis , 2011, Visual Analysis of Humans.

[5]  Takeo Kanade,et al.  Facial Expression Analysis , 2011, AMFG.

[6]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  Beat Fasel,et al.  Automati Fa ial Expression Analysis: A Survey , 1999 .

[9]  Maja Pantic,et al.  Automatic Analysis of Facial Expressions: The State of the Art , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Cheng Wang,et al.  A novel extended local-binary-pattern operator for texture analysis , 2008, Inf. Sci..

[11]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[12]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[13]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[14]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[15]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Chung-Lin Huang,et al.  Facial Expression Recognition Using Model-Based Feature Extraction and Action Parameters Classification , 1997, J. Vis. Commun. Image Represent..

[17]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[18]  Oksam Chae,et al.  Local Directional Pattern (LDP) for face recognition , 2010, 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE).