Interobserver variation in clinical target volume and organs at risk segmentation in post-parotidectomy radiotherapy: can segmentation protocols help?

OBJECTIVE A study of interobserver variation in the segmentation of the post-operative clinical target volume (CTV) and organs at risk (OARs) for parotid tumours was undertaken. The segmentation exercise was performed as a baseline, and repeated after 3 months using a segmentation protocol to assess whether CTV conformity improved. METHODS Four head and neck oncologists independently segmented CTVs and OARs (contralateral parotid, spinal cord and brain stem) on CT data sets of five patients post parotidectomy. For each CTV or OAR delineation, total volume was calculated. The conformity level (CL) between different clinicians' outlines was measured using a validated outline analysis tool. The data for CTVs were re-analysed after using the cochlear sparing therapy and conventional radiation segmentation protocol. RESULTS Significant differences in CTV morphology were observed at baseline, yielding a mean CL of 30% (range 25-39%). The CL improved after using the segmentation protocol with a mean CL of 54% (range 50-65%). For OARs, the mean CL was 60% (range 53-68%) for the contralateral parotid gland, 23% (range 13-27%) for the brain stem and 25% (range 22-31%) for the spinal cord. CONCLUSIONS There was low conformity for CTVs and OARs between different clinicians. The CL for CTVs improved with use of a segmentation protocol, but the CLs remained lower than expected. This study supports the need for clear guidelines for segmentation of target and OARs to compare and interpret the results of head and neck cancer radiation studies.

[1]  Ajl Harrison,et al.  Technical overview of geometric uncertainties in radiotherapy , 2003 .

[2]  R. Cowan,et al.  Assessing the effect of a contouring protocol on postprostatectomy radiotherapy clinical target volumes and interphysician variation. , 2009, International journal of radiation oncology, biology, physics.

[3]  J. Sham,et al.  Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. , 2006, International journal of radiation oncology, biology, physics.

[4]  Thomas Krauss,et al.  Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume. A comparison between gynaecologic and radiation oncologists. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[5]  Jean-François Daisne,et al.  Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  Johannes A Langendijk,et al.  Delineation guidelines for organs at risk involved in radiation-induced salivary dysfunction and xerostomia. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  E Bellon,et al.  Laryngeal tumor volume measurements determined with CT: a study on intra- and interobserver variability. , 1998, International journal of radiation oncology, biology, physics.

[8]  A. Riegel,et al.  Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. , 2005, International journal of radiation oncology, biology, physics.

[9]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[10]  C. Fiorino,et al.  Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. , 1998, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  Jake Van Dyk,et al.  Improving the consistency in cervical esophageal target volume definition by special training. , 2002, International journal of radiation oncology, biology, physics.

[12]  B. Heijmen,et al.  Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[13]  Bernard Dubray,et al.  Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[14]  K Okajima,et al.  Differences in target outline delineation from CT scans of brain tumours using different methods and different observers. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  B J Mijnheer,et al.  Variability in target volume delineation on CT scans of the breast. , 2001, International journal of radiation oncology, biology, physics.

[16]  Alicia Y Toledano,et al.  An evaluation of the variability of tumor-shape definition derived by experienced observers from CT images of supraglottic carcinomas (ACRIN protocol 6658). , 2007, International journal of radiation oncology, biology, physics.

[17]  Sadek Nehmeh,et al.  Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? , 2005, International journal of radiation oncology, biology, physics.

[18]  M. Bucci,et al.  Local-regional recurrence after surgery without postoperative irradiation for carcinomas of the major salivary glands: implications for adjuvant therapy. , 2007, International journal of radiation oncology, biology, physics.

[19]  P. Levendag,et al.  Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[20]  E. Kouwenhoven,et al.  Measuring the similarity of target volume delineations independent of the number of observers , 2009, Physics in medicine and biology.

[21]  L. Stitt,et al.  Variability of target volume delineation in cervical esophageal cancer. , 1998, International journal of radiation oncology, biology, physics.

[22]  Cyrill Burger,et al.  [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. , 2007, International journal of radiation oncology, biology, physics.

[23]  Charles Mayo,et al.  Radiation associated brainstem injury. , 2010, International journal of radiation oncology, biology, physics.

[24]  Sherif Heiba,et al.  Variability of gross tumor volume delineation in head-and-neck cancer using PET/CT fusion, Part II: the impact of a contouring protocol. , 2009, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[25]  X Allen Li,et al.  Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. , 2006, International journal of radiation oncology, biology, physics.

[26]  Lei Dong,et al.  Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. , 2007, International journal of radiation oncology, biology, physics.

[27]  Philippe Lambin,et al.  PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. , 2007, International journal of radiation oncology, biology, physics.

[28]  Arjan Bel,et al.  Definition of gross tumor volume in lung cancer: inter-observer variability. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  Brian O'Sullivan,et al.  Intraobserver and interobserver variability in GTV delineation on FDG-PET-CT images of head and neck cancers. , 2007, International journal of radiation oncology, biology, physics.

[30]  Jean-François Daisne,et al.  Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. , 2004, Radiology.

[31]  A. E. Saarnak,et al.  Inter-observer variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[32]  J M Wilkinson,et al.  Geometric uncertainties in radiotherapy. , 2004, The British journal of radiology.

[33]  M. V. van Herk,et al.  Irradiation of paranasal sinus tumors, a delineation and dose comparison study. , 2002, International journal of radiation oncology, biology, physics.

[34]  David Schuster,et al.  Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. , 2005, International journal of radiation oncology, biology, physics.