Vertical-cavity surface-emitting lasers: effects of heating on modal characteristics and threshold current

Vertical-cavity surface-emitting lasers (VCSELs) have unique properties that distinguish them from conventional edge-emitting semiconductor lasers and render them very attractive for a number of novel applications. In addition to those distinguishing features, due to intense heating the role of thermal effects in VCSELs is by far more prominent than in edge emitters. In this paper, a brief review is given of some of VCSEL properties influenced by temperature. Effects of temperature on spectral device characteristics are discussed, including the temperature dependence of the longitudinal mode spectra and the transverse-mode structure. A new condition is formulated for thermal matching of the Bragg mirrors and the spacer region. Temperature sensitivity of threshold current is also considered, and the dominant role of the gain peak/cavity resonance detuning is described.

[1]  W. J. Turner,et al.  Refractive Index of InP , 1965 .

[2]  D. L. Crawford,et al.  Temperature dependence of the properties of DBR mirrors used in surface normal optoelectronic devices , 1992, IEEE Photonics Technology Letters.

[3]  GaInAsP/InP surface emitting injection laser with a ring electrode , 1984, IEEE Journal of Quantum Electronics.

[4]  C. Chang-Hasnain,et al.  Transverse mode selection with a passive antiguide region in vertical cavity surface emitting lasers , 1994, IEEE Photonics Technology Letters.

[5]  Hyo-Hoon Park,et al.  Low threshold current density InGaAs surface-emitting lasers with periodic gain active structure , 1994 .

[6]  Kevin J. Malloy,et al.  High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition , 1994 .

[7]  N. Dutta,et al.  Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors , 1991 .

[8]  M. Adams,et al.  Phase and group indices for double heterostructure lasers , 1979 .

[9]  C. Tien,et al.  Size effects on the temperature rise in vertical-cavity surface-emitting laser diodes , 1994 .

[10]  J. M. Hammer,et al.  Surface Emitting Semiconductor Lasers and Arrays , 1994 .

[11]  Marek Osinski,et al.  Temperature Profiles in Etched-Well Surface-Emitting Semiconductor Lasers , 1991 .

[12]  C. Chang-Hasnain,et al.  Low threshold buried heterostructure vertical cavity surface emitting laser , 1993 .

[13]  Scott W. Corzine,et al.  Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors , 1992 .

[14]  J. Manning,et al.  Thermal impedance of diode lasers: Comparison of experimental methods and a theoretical model , 1981 .

[15]  Brian Thibeault,et al.  Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers , 1993 .

[16]  C. Chang-Hasnain,et al.  Transverse mode characteristics of vertical cavity surface-emitting lasers , 1990 .

[17]  D. Marple,et al.  Refractive Index of GaAs , 1964 .

[18]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[19]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[20]  Larry A. Coldren,et al.  Efficient vertical-cavity lasers , 1992 .

[21]  Karl Joachim Ebeling,et al.  Tunable vertical-cavity laser diodes with submilliamp threshold currents and efficient fiber coupling , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[22]  B. Tell,et al.  Short wavelength (699 nm) electrically pumped vertical-cavity surface-emitting lasers , 1992, IEEE Photonics Technology Letters.

[23]  J. Buus Models of the static and dynamic behavior of stripe geometry lasers , 1983 .

[24]  J. Bowers,et al.  Thermal resistance of 1.3μm InGaAsP vertical cavity lasers , 1993 .

[25]  J. Sarma,et al.  Lasing mode selection in vertical-cavity surface emitting-laser diodes , 1993, IEEE Photonics Technology Letters.

[26]  Niloy K. Dutta,et al.  High temperature and high frequency performance of gain-guided surface emitting lasers , 1991 .

[27]  J. Bowers,et al.  Effects of nonuniform current injection in GaInAsP/InP vertical‐ cavity lasers , 1992 .

[28]  Connie J. Chang-Hasnain,et al.  Advances in vertical cavity surface emitting lasers , 1997 .

[29]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[30]  N. A. Olsson,et al.  Room‐temperature continuous‐wave vertical‐cavity surface‐emitting GaAs injection lasers , 1989 .

[31]  F. Koyama,et al.  Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser , 1989 .

[32]  B. Tell,et al.  TEMPERATURE-DEPENDENCE OF GAAS-ALGAAS VERTICAL CAVITY SURFACE EMITTING LASERS , 1992 .

[33]  Kenichi Iga,et al.  GaInAsP/InP surface-emitting lasers with current confining structure , 1986 .

[34]  K. Aiki,et al.  Lasing characteristics of distributed-feedback GaAs-GaAlAs diode lasers with separate optical and carrier confinement , 1976 .

[35]  Marlin W. Focht,et al.  Extended temperature and wavelength performance of vertical cavity top surface emitting lasers , 1993 .

[36]  Naresh Chand,et al.  Characteristics of single- and two-dimensional phase coupled arrays of vertical cavity surface emitting GaAs-AlGaAs lasers , 1990 .

[37]  L. Coldren,et al.  Effect of temperature on the operating characteristics of asymmetric Fabry–Perot reflection modulators , 1990 .

[38]  K. Y. Lau,et al.  High single‐mode output power from compact external microcavity surface‐emitting laser diode , 1993 .

[39]  R. F. Nabiev,et al.  Singlemode emission from a passive-antiguide-region vertical-cavity surface-emitting laser , 1993 .

[40]  L. Coldren,et al.  Low threshold planarized vertical-cavity surface-emitting lasers , 1990, IEEE Photonics Technology Letters.

[41]  Dynamical thermal properties of stripe-geometry laser diodes , 1984 .

[42]  Daryoosh Vakhshoori,et al.  Top‐surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies , 1993 .

[43]  John E. Bowers,et al.  Modal reflection of quarter-wave mirrors in vertical-cavity lasers , 1993 .

[44]  安達 定雄 Physical properties of III-V semiconductor compounds : InP, InAs, GaAs, GaP, InGaAs, and InGaAsP , 1992 .

[45]  Jennifer S. Smith,et al.  Pulsed and continuous‐wave thermal characteristics of external‐cavity surface‐emitting laser diodes , 1994 .

[46]  K. Iga Surface emitting lasers , 1990 .

[47]  J. P. Harbison,et al.  Polarisation characteristics of quantum well vertical cavity surface emitting lasers , 1991 .

[48]  N. Holonyak,et al.  Physics of Semiconductor Laser Devices , 1981 .

[49]  K. Tai,et al.  Reliability studies of 0.85 mu m vertical cavity surface emitting lasers: 50000 h MTTF at 25 degrees C , 1993 .

[50]  G. A. Vawter,et al.  Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD , 1991, IEEE Photonics Technology Letters.

[51]  Li-Wei Tu,et al.  High temperature performance of three-quantum-well vertical-cavity top-emitting lasers , 1991 .

[52]  E. Zeeb,et al.  Tunable extremely low threshold vertical-cavity laser diodes , 1993, IEEE Photonics Technology Letters.

[53]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[54]  Larry A. Coldren,et al.  Low threshold, high power, vertical-cavity surface-emitting lasers , 1991 .

[55]  Modeling the current to light characteristics of index‐guided vertical‐cavity surface‐emitting lasers , 1993 .

[56]  D. M. Kuchta,et al.  Spatial hole burning and self‐focusing in vertical‐cavity surface‐emitting laser diodes , 1994 .

[57]  K. Choquette,et al.  Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy , 1994, IEEE Photonics Technology Letters.