Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol

[1]  L. Xing,et al.  Cu2O Nano-flowers/Graphene Enabled Scaffolding Structure Catalyst Layer for Enhanced CO2 Electrochemical Reduction , 2021, Applied Catalysis B: Environmental.

[2]  J. Arbiol,et al.  Molecular Engineering to Tune the Ligand Environment of Atomically Dispersed Nickel for Efficient Alcohol Electrochemical Oxidation , 2021, Advanced Functional Materials.

[3]  Haitao Huang,et al.  Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte , 2021, Applied Catalysis B: Environmental.

[4]  Yong Lu,et al.  Regulating Electrocatalytic Oxygen Reduction Activity of Metal Coordination Polymer via d-π Conjugation. , 2021, Angewandte Chemie.

[5]  Lirong Zheng,et al.  Synthesis of Boron-imidazolate Framework nanosheet with Dimer Cu units for CO2 Electroreduction to Ethylene. , 2021, Angewandte Chemie.

[6]  Bo Wang,et al.  The Synthesis of Hexaazatrinaphthylene Based 2D Conjugated Copper Metal-Organic Framework for Highly Selective and Stable Electroreduction of CO⁠2⁠ to Methane. , 2021, Angewandte Chemie.

[7]  Wei Zhou,et al.  Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. , 2021, Journal of the American Chemical Society.

[8]  O. Terasaki,et al.  Tricycloquinazoline Based 2D Conductive Metal-Organic Frameworks as Promising Electrocatalysts for CO2 Reduction. , 2021, Angewandte Chemie.

[9]  Y. Liu,et al.  Co-based molecular catalysts for efficient CO2 reduction via regulating spin states , 2021 .

[10]  Chuntai Liu,et al.  Selective Etching Quaternary MAX Phase toward Single Atom Copper Immobilized MXene (Ti3C2Clx) for Efficient CO2 Electroreduction to Methanol. , 2021, ACS nano.

[11]  Hao Shen,et al.  Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface , 2021 .

[12]  Haoquan Zheng,et al.  Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. , 2021, Chemical Society reviews.

[13]  Qianqian Liu,et al.  Fastening Br– Ions at Copper–Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol , 2021 .

[14]  B. Yakobson,et al.  Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current , 2020 .

[15]  Jun Chen,et al.  A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage. , 2020, Angewandte Chemie.

[16]  H. Dai,et al.  Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction , 2020, Nature Energy.

[17]  M. Robert,et al.  Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. , 2020, Chemical Society reviews.

[18]  Wensheng Yan,et al.  Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts , 2020 .

[19]  Qingshan Zhao,et al.  Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction , 2020 .

[20]  Y. Kan,et al.  Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction , 2020, Nature Communications.

[21]  T. Jaramillo,et al.  Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine. , 2019, Angewandte Chemie.

[22]  Hailiang Wang,et al.  Domino electroreduction of CO2 to methanol on a molecular catalyst , 2019, Nature.

[23]  Xiaodong Yan,et al.  A two-dimensional semiconducting covalent organic framework with nickel(ii) coordination for high capacitive performance , 2019, Journal of Materials Chemistry A.

[24]  Jianhong Liu,et al.  Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. , 2019, Journal of the American Chemical Society.

[25]  J. Reimer,et al.  Multistep Solid-State Organic Synthesis of Carbamate-Linked Covalent Organic Frameworks. , 2019, Journal of the American Chemical Society.

[26]  Hao Ming Chen,et al.  Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO , 2019, Science.

[27]  Yong Lu,et al.  A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. , 2018, Angewandte Chemie.

[28]  Genevieve Saur,et al.  What Should We Make with CO2 and How Can We Make It , 2018 .

[29]  Jinlong Yang,et al.  Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. , 2018, Angewandte Chemie.

[30]  Tao Zhang,et al.  Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction , 2018 .

[31]  Dean J. Miller,et al.  Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction , 2017 .

[32]  Jinlong Gong,et al.  Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms. , 2017, Angewandte Chemie.

[33]  Hailiang Wang,et al.  Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures , 2017, Nature Communications.

[34]  B. Han,et al.  Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. , 2016, Angewandte Chemie.

[35]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[36]  R. Manivannan,et al.  Benzoquinone–imidazole hybrids as selective colorimetric sensors for cyanide in aqueous, solid and gas phases , 2015 .

[37]  José Solla-Gullón,et al.  Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution , 2015 .

[38]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[39]  D. Magana,et al.  CO2 reduction catalyzed by mercaptopteridine on glassy carbon. , 2014, Journal of the American Chemical Society.

[40]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[41]  R. Banerjee,et al.  Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. , 2013, Journal of the American Chemical Society.

[42]  Hans‐Jörg Himmel,et al.  Redox‐Active Guanidine Ligands with Pyridine and p‐Benzoquinone Backbones , 2012 .

[43]  Jing Chen,et al.  Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes , 2009 .

[44]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[45]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[46]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[49]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[50]  John J. Rehr,et al.  Theoretical X-ray Absorption Fine Structure Standards , 1991 .

[51]  Minrui Gao,et al.  Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction , 2021 .

[52]  J. Flake,et al.  Electrochemical Reduction of CO2 at Cu Nanocluster / (101̅0) ZnO Electrodes , 2013 .

[53]  K. Wallenfels,et al.  Darstellung von tetraamino-benzochinon-1,4 aus fluoranil und chloranil , 1959 .