Hochschild (co-)homology of schemes with tilting object
暂无分享,去创建一个
[1] Markus Perling. Exceptional sequences of invertible sheaves on rational surfaces , 2008, Compositio Mathematica.
[2] A. V. Shepler,et al. Finite groups acting linearly: Hochschild cohomology and the cup product , 2009, 0911.0920.
[3] T. Bridgeland,et al. Helices on del Pezzo surfaces and tilting Calabi-Yau algebras , 2009, 0909.1732.
[4] Travis Schedler,et al. Superpotentials and higher order derivations , 2008, 0802.0162.
[5] A. Samokhin. Some remarks on the derived categories of coherent sheaves on homogeneous spaces , 2006, math/0612800.
[6] R. Buchweitz,et al. The global decomposition theorem for Hochschild (co-)homology of singular spaces via the Atiyah–Chern character☆ , 2006, math/0606730.
[7] R. Buchweitz,et al. GLOBAL HOCHSCHILD (CO-)HOMOLOGY OF SINGULAR SPACES , 2006, math/0606593.
[8] C. Böhning. Derived categories of coherent sheaves on rational homogeneous manifolds , 2005, Documenta Mathematica.
[9] R. Miró-Roig,et al. Derived categories of projective bundles , 2005 .
[10] T. Bridgeland. T-structures on some local Calabi–Yau varieties , 2005, math/0502050.
[11] D. Huybrechts. Fourier Mukai Transforms for . . . , 2005 .
[12] M. Farinati. Hochschild duality, localization, and smash products , 2004, math/0409039.
[13] Yang Han,et al. Hochschild (Co)Homology Dimension , 2004, math/0408402.
[14] B. Toën. The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.
[15] M. Bergh,et al. Handbook of Tilting Theory: Fourier-Mukai transforms , 2004, math/0402043.
[16] B. Keller. DERIVED CATEGORIES AND TILTING , 2004 .
[17] B. Keller. Hochschild cohomology and derived Picard groups , 2003, math/0310221.
[18] A. Căldăraru,et al. The Mukai pairing, I: the Hochschild structure , 2003, math/0308079.
[19] V. Ginzburg,et al. Poisson deformations of symplectic quotient singularities , 2002, math/0212279.
[20] S. Witherspoon,et al. Algebraic deformations arising from orbifolds with discrete torsion , 2002, math/0210027.
[21] M. Bergh,et al. Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.
[22] A. Samokhin. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The derived category of coherent sheaves on LG_3^{\mathbf C} , 2001 .
[23] Y. Manin,et al. Semi)simple exercises in quantum cohomology , 2001, math/0103164.
[24] A. Bondal,et al. Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences , 1997, Compositio Mathematica.
[25] A V Samokhin. The derived category of coherent sheaves on , 2001 .
[26] B. Dubrovin. Geometry and analytic theory of Frobenius manifolds , 1998, math/9807034.
[27] J. Christensen. Ideals in triangulated categories: phantoms, ghosts and skeleta , 1998, math/9807071.
[28] Michel Van den Bergh,et al. A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .
[29] Bernhard Keller,et al. Invariance and localization for cyclic homology of DG algebras , 1998 .
[30] J. Brylinski. A correspondence dual to McKay's , 1996, alg-geom/9612003.
[31] R. G. Swan. Hochschild cohomology of quasiprojective schemes , 1996 .
[32] Amnon Neeman,et al. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .
[33] Maurice Auslander,et al. Representation Theory of Artin Algebras: Notation , 1995 .
[34] A. Neeman. The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , 1992 .
[35] Jeremy Rickard,et al. Derived Equivalences As Derived Functors , 1991 .
[36] A. Bondal,et al. REPRESENTATION OF ASSOCIATIVE ALGEBRAS AND COHERENT SHEAVES , 1990 .
[37] A. Bondal. Helices and Vector Bundles: Seminaire Rudakov: Helixes, Representations of Quivers and Koszul Algebras , 1990 .
[38] A. King,et al. Helices and vector bundles : seminaire Rudakov , 1990 .
[39] Dieter Happel,et al. Hochschild cohomology of finite—dimensional algebras , 1989 .
[40] D. Baer. Tilting sheaves in representation theory of algebras , 1988 .
[41] Claude Cibils,et al. On the hochschild cohomology of finite dimensional algebras , 1988 .
[42] G. Bergman,et al. Universal derivations and universal ring constructions , 1978 .
[43] D. Quillen. On the (co)homology of commutative rings , 1970 .
[44] Alexander Grothendieck,et al. Éléments de géométrie algébrique : II. Étude globale élémentaire de quelques classes de morphismes , 1961 .
[45] Alexander Grothendieck,et al. Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents , 1961 .
[46] Alexander Grothendieck,et al. Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .
[47] A. Grothendieck,et al. Éléments de géométrie algébrique , 1960 .
[48] A. Grothendieck. Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .
[49] G. Hochschild,et al. On the cohomology groups of an associative algebra , 1945 .