Hochschild (co-)homology of schemes with tilting object

Given a $k$--scheme $X$ that admits a tilting object $T$, we prove that the Hochschild (co-)homology of $X$ is isomorphic to that of $A= End_{X}(T)$. We treat more generally the relative case when $X$ is flat over an affine scheme $Y=\Spec R$ and the tilting object satisfies an appropriate Tor-independence condition over $R$. Among applications, Hochschild homology of $X$ over $Y$ is seen to vanish in negative degrees, smoothness of $X$ over $Y$ is shown to be equivalent to that of $A$ over $R$, and for $X$ a smooth projective scheme we obtain that Hochschild homology is concentrated in degree zero. Using the Hodge decomposition \cite{BFl2} of Hochschild homology in characteristic zero, for $X$ smooth over $Y$ the Hodge groups $H^{q}(X,\Omega_{X/Y}^{p})$ vanish for $p < q$, while in the absolute case they even vanish for $p\neq q$. We illustrate the results for crepant resolutions of quotient singularities, in particular for the total space of the canonical bundle on projective space.

[1]  Markus Perling Exceptional sequences of invertible sheaves on rational surfaces , 2008, Compositio Mathematica.

[2]  A. V. Shepler,et al.  Finite groups acting linearly: Hochschild cohomology and the cup product , 2009, 0911.0920.

[3]  T. Bridgeland,et al.  Helices on del Pezzo surfaces and tilting Calabi-Yau algebras , 2009, 0909.1732.

[4]  Travis Schedler,et al.  Superpotentials and higher order derivations , 2008, 0802.0162.

[5]  A. Samokhin Some remarks on the derived categories of coherent sheaves on homogeneous spaces , 2006, math/0612800.

[6]  R. Buchweitz,et al.  The global decomposition theorem for Hochschild (co-)homology of singular spaces via the Atiyah–Chern character☆ , 2006, math/0606730.

[7]  R. Buchweitz,et al.  GLOBAL HOCHSCHILD (CO-)HOMOLOGY OF SINGULAR SPACES , 2006, math/0606593.

[8]  C. Böhning Derived categories of coherent sheaves on rational homogeneous manifolds , 2005, Documenta Mathematica.

[9]  R. Miró-Roig,et al.  Derived categories of projective bundles , 2005 .

[10]  T. Bridgeland T-structures on some local Calabi–Yau varieties , 2005, math/0502050.

[11]  D. Huybrechts Fourier Mukai Transforms for . . . , 2005 .

[12]  M. Farinati Hochschild duality, localization, and smash products , 2004, math/0409039.

[13]  Yang Han,et al.  Hochschild (Co)Homology Dimension , 2004, math/0408402.

[14]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[15]  M. Bergh,et al.  Handbook of Tilting Theory: Fourier-Mukai transforms , 2004, math/0402043.

[16]  B. Keller DERIVED CATEGORIES AND TILTING , 2004 .

[17]  B. Keller Hochschild cohomology and derived Picard groups , 2003, math/0310221.

[18]  A. Căldăraru,et al.  The Mukai pairing, I: the Hochschild structure , 2003, math/0308079.

[19]  V. Ginzburg,et al.  Poisson deformations of symplectic quotient singularities , 2002, math/0212279.

[20]  S. Witherspoon,et al.  Algebraic deformations arising from orbifolds with discrete torsion , 2002, math/0210027.

[21]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[22]  A. Samokhin COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The derived category of coherent sheaves on LG_3^{\mathbf C} , 2001 .

[23]  Y. Manin,et al.  Semi)simple exercises in quantum cohomology , 2001, math/0103164.

[24]  A. Bondal,et al.  Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences , 1997, Compositio Mathematica.

[25]  A V Samokhin The derived category of coherent sheaves on , 2001 .

[26]  B. Dubrovin Geometry and analytic theory of Frobenius manifolds , 1998, math/9807034.

[27]  J. Christensen Ideals in triangulated categories: phantoms, ghosts and skeleta , 1998, math/9807071.

[28]  Michel Van den Bergh,et al.  A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .

[29]  Bernhard Keller,et al.  Invariance and localization for cyclic homology of DG algebras , 1998 .

[30]  J. Brylinski A correspondence dual to McKay's , 1996, alg-geom/9612003.

[31]  R. G. Swan Hochschild cohomology of quasiprojective schemes , 1996 .

[32]  Amnon Neeman,et al.  The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .

[33]  Maurice Auslander,et al.  Representation Theory of Artin Algebras: Notation , 1995 .

[34]  A. Neeman The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , 1992 .

[35]  Jeremy Rickard,et al.  Derived Equivalences As Derived Functors , 1991 .

[36]  A. Bondal,et al.  REPRESENTATION OF ASSOCIATIVE ALGEBRAS AND COHERENT SHEAVES , 1990 .

[37]  A. Bondal Helices and Vector Bundles: Seminaire Rudakov: Helixes, Representations of Quivers and Koszul Algebras , 1990 .

[38]  A. King,et al.  Helices and vector bundles : seminaire Rudakov , 1990 .

[39]  Dieter Happel,et al.  Hochschild cohomology of finite—dimensional algebras , 1989 .

[40]  D. Baer Tilting sheaves in representation theory of algebras , 1988 .

[41]  Claude Cibils,et al.  On the hochschild cohomology of finite dimensional algebras , 1988 .

[42]  G. Bergman,et al.  Universal derivations and universal ring constructions , 1978 .

[43]  D. Quillen On the (co)homology of commutative rings , 1970 .

[44]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique : II. Étude globale élémentaire de quelques classes de morphismes , 1961 .

[45]  Alexander Grothendieck,et al.  Elements de geometrie algebrique III: Etude cohomologique des faisceaux coherents , 1961 .

[46]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .

[47]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[48]  A. Grothendieck Éléments de géométrie algébrique : I. Le langage des schémas , 1960 .

[49]  G. Hochschild,et al.  On the cohomology groups of an associative algebra , 1945 .