Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B

In many physical situations, a few specific eigenvalues of a large sparse generalized eigenvalue problem Ax = ABx are needed. If exact linear solves with A - σB are available, implicitly restarted Arnoldi with purification is a common approach for problems where B is positive semidefinite. In this paper, a new approach based on implicitly restarted Arnoldi will be presented that avoids most of the problems due to the singularity of B. Secondly, if exact solves are not available, Jacobi-Davidson QZ will be presented as a robust method to compute a few specific eigenvalues. Results are illustrated by numerical experiments.

[1]  R. Lehoucq,et al.  Implicitly restarted Arnoldi methods and eigenvalues of the discretized Navier-Stokes equations , 1997 .

[2]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[5]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[6]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[7]  A. Spence,et al.  Is the steady viscous incompressible two‐dimensional flow over a backward‐facing step at Re = 800 stable? , 1993 .

[8]  Karl Meerbergen,et al.  Implicitly restarted Arnoldi with purification for the shift-invert transformation , 1997, Math. Comput..

[9]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[10]  A. Spence,et al.  The numerical analysis of bifurcation problems with application to fluid mechanics , 2000, Acta Numerica.

[11]  Danny C. Sorensen,et al.  Deflation for Implicitly Restarted Arnoldi Methods , 1998 .

[12]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[13]  R. Lehoucq,et al.  Deflation Techniques within an Implicitly Restarted Arnoldi Iteration * , 2003 .

[14]  H. V. D. Vorst,et al.  EFFICIENT EXPANSION OF SUBSPACES IN THE JACOBI-DAVIDSON METHOD FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 1998 .

[15]  Joost Rommes,et al.  Computing a partial generalized real Schur form using the Jacobi-Davidson method , 2007, Numer. Linear Algebra Appl..

[16]  K. Meerbergen,et al.  The Restarted Arnoldi Method Applied to Iterative Linear System Solvers for the Computation of Rightmost Eigenvalues , 1997 .

[17]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[18]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[19]  A. Spence,et al.  Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics , 1994, SIAM J. Matrix Anal. Appl..

[20]  T. Ericsson A Generalised Eigenvalue Problem and The Lanczos Algorithm , 1986 .

[21]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[22]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[23]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[24]  B. Parlett,et al.  How to implement the spectral transformation , 1987 .

[25]  K. A. Cliffe,et al.  Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations , 1993, Adv. Comput. Math..