One-Time Nondeterministic Computations

We introduce the concept of one-time nondeterminism as a new kind of limited nondeterminism for finite state machines and pushdown automata. Roughly speaking, one-time nondeterminism means that at the outset the automaton is nondeterministic, but whenever it performs a guess, this guess is fixed for the rest of the computation. We characterize the computational power of one-time nondeterministic finite automata (OTNFAs) and one-time nondeterministic pushdown devices. Moreover, we study the descriptional complexity of these machines. For instance, we show that for an n-state OTNFA with a sole nondeterministic state, that is nondeterministic for only one input symbol, \((n+1)^n\) states are sufficient and necessary in the worst case for an equivalent deterministic finite automaton. In case of pushdown automata, the conversion of a nondeterministic to a one-time nondeterministic as well as the conversion of a one-time nondeterministic to a deterministic one turn out to be non-recursive, that is, the trade-offs in size cannot be bounded by any recursive function.