Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm.

[1]  J. Thornton Disulphide bridges in globular proteins. , 1981, Journal of molecular biology.

[2]  J. Beckwith,et al.  Identification of a protein required for disulfide bond formation in vivo , 1991, Cell.

[3]  K. Ito,et al.  In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product. , 1992, The Journal of biological chemistry.

[4]  John Kuriyan,et al.  Crystal structure of the DsbA protein required for disulphide bond formation in vivo , 1993, Nature.

[5]  D. Belin,et al.  A pathway for disulfide bond formation in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H. Berg,et al.  Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Creighton,et al.  The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. , 1993, Biochemistry.

[8]  C. Georgopoulos,et al.  Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  C. Georgopoulos,et al.  The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. , 1994, The EMBO journal.

[10]  J. Joly,et al.  Protein folding activities of Escherichia coli protein disulfide isomerase. , 1994, Biochemistry.

[11]  J. Beckwith,et al.  Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. , 1994, The EMBO journal.

[12]  G. Georgiou,et al.  The folding of bovine pancreatic trypsin inhibitor in the Escherichia coli periplasm. , 1994, The Journal of biological chemistry.

[13]  Koreaki Ito,et al.  DsbA-DsbB Interaction through Their Active Site Cysteines , 1995, The Journal of Biological Chemistry.

[14]  J. Beckwith,et al.  Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Koreaki Ito,et al.  Redox states of DsbA in the periplasm of Escherichia coli , 1995, FEBS letters.

[16]  T. Creighton,et al.  Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. , 1995, Biochemistry.

[17]  T. Creighton,et al.  Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. , 1995, Biochemistry.

[18]  J. Winther,et al.  Why is DsbA such an oxidizing disulfide catalyst? , 1995, Cell.

[19]  D. Missiakas,et al.  Identification and characterization of a new disulfide isomerase‐like protein (DsbD) in Escherichia coli. , 1995, The EMBO journal.

[20]  D. Belin,et al.  An in vivo pathway for disulfide bond isomerization in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Koreaki Ito,et al.  Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[22]  R. Glockshuber,et al.  Preferential binding of an unfolded protein to DsbA. , 1996, The EMBO journal.

[23]  L. Guddat,et al.  The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding , 1997, Protein science : a publication of the Protein Society.

[24]  R. Glockshuber,et al.  Structural analysis of three His32 mutants of DsbA: Support for an electrostatic role of His32 in DsbA stability , 1997, Protein science : a publication of the Protein Society.

[25]  Paul H. Bessette,et al.  Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin , 1997, Journal of bacteriology.

[26]  J. Joly,et al.  In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. , 1997, Biochemistry.

[27]  H. Inokuchi,et al.  Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Creighton,et al.  Contributions of substrate binding to the catalytic activity of DsbC. , 1998, Biochemistry.

[29]  L. Guddat,et al.  Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. , 1998, Structure.

[30]  M. Bader,et al.  Reconstitution of a Protein Disulfide Catalytic System* , 1998, The Journal of Biological Chemistry.

[31]  J. Joly,et al.  Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Söling,et al.  The protein disulphide-isomerase family: unravelling a string of folds. , 1999, The Biochemical journal.

[33]  P. Lund,et al.  Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. , 1999, FEMS microbiology letters.

[34]  Paul H. Bessette,et al.  In Vivo and in Vitro Function of theEscherichia coli Periplasmic Cysteine Oxidoreductase DsbG* , 1999, The Journal of Biological Chemistry.

[35]  Yan Wang,et al.  Chaperone Activity of DsbC* , 1999, The Journal of Biological Chemistry.

[36]  J. Beckwith,et al.  Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli , 1999, The EMBO journal.

[37]  R. Noiva Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. , 1999, Seminars in cell & developmental biology.

[38]  M. Bader,et al.  Oxidative Protein Folding Is Driven by the Electron Transport System , 1999, Cell.

[39]  V. Rybin,et al.  Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli , 2000, Nature Structural Biology.

[40]  R. Raines,et al.  Native disulfide bond formation in proteins. , 2000, Current opinion in chemical biology.

[41]  C. Wang,et al.  The N-terminal Sequence (Residues 1–65) Is Essential for Dimerization, Activities, and Peptide Binding of Escherichia coli DsbC* , 2000, The Journal of Biological Chemistry.

[42]  M. Bader,et al.  DsbG, a Protein Disulfide Isomerase with Chaperone Activity* , 2000, The Journal of Biological Chemistry.

[43]  F. Vinci,et al.  Investigation of the DsbA mechanism through the synthesis and analysis of an irreversible enzyme-ligand complex. , 2000, Biochemistry.

[44]  J. Beckwith,et al.  Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Beckwith,et al.  Transmembrane Electron Transfer by the Membrane Protein DsbD Occurs via a Disulfide Bond Cascade , 2000, Cell.

[46]  D. Missiakas,et al.  Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol–disulphide exchange and protein folding in the bacterial periplasm , 2000, Molecular microbiology.

[47]  M. Bader,et al.  Disulfide Bonds Are Generated by Quinone Reduction* , 2000, The Journal of Biological Chemistry.

[48]  H. Scheraga,et al.  Disulfide bonds and protein folding. , 2000, Biochemistry.

[49]  Escherichia coli Periplasm in Protein Produced and Transported to the Multiple-Disulfide-Bonded Recombinant Isomerase DsbC Stabilizes Overexpression of Protein Disulfide , 2000 .

[50]  M. Bader,et al.  Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA , 2001, The EMBO journal.

[51]  J. Bardwell,et al.  DsbB Catalyzes Disulfide Bond Formation de Novo * , 2002, The Journal of Biological Chemistry.

[52]  M. Bader,et al.  Identification of the Ubiquinone-binding Domain in the Disulfide Catalyst Disulfide Bond Protein B* , 2002, The Journal of Biological Chemistry.

[53]  J. Beckwith,et al.  Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA , 2002, The EMBO journal.

[54]  J. Beckwith,et al.  The disulfide bond isomerase DsbC is activated by an immunoglobulin‐fold thiol oxidoreductase: crystal structure of the DsbC–DsbDα complex , 2002, The EMBO journal.

[55]  Koreaki Ito,et al.  Paradoxical redox properties of DsbB and DsbA in the protein disulfide‐introducing reaction cascade , 2002, The EMBO journal.

[56]  J. Collet,et al.  Reconstitution of a Disulfide Isomerization System* , 2002, The Journal of Biological Chemistry.

[57]  D. Eisenberg,et al.  Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. , 2002, Biochemistry.

[58]  Zhong Zhang,et al.  Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. , 2002, Protein expression and purification.

[59]  C. Sevier,et al.  Formation and transfer of disulphide bonds in living cells , 2002, Nature Reviews Molecular Cell Biology.

[60]  R. Glockshuber,et al.  Mechanism of the electron transfer catalyst DsbB from Escherichia coli , 2003, The EMBO journal.

[61]  J. Beckwith,et al.  Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B. Trumpower,et al.  Disulfide bond formation involves a quinhydrone-type charge–transfer complex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. Jeong,et al.  Crystal structure of DsbDγ reveals the mechanism of redox potential shift and substrate specificity 1 , 2003, FEBS letters.

[64]  Koreaki Ito,et al.  DsbB Elicits a Red-shift of Bound Ubiquinone during the Catalysis of DsbA Oxidation* , 2004, Journal of Biological Chemistry.

[65]  A. J. Clifford,et al.  BIOCHIMICA ET BIOPHYSICA ACTA , 2022 .