The maximum angle condition is not necessary for convergence of the finite element method
暂无分享,去创建一个
[1] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.
[2] Sergey Korotov,et al. On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions , 2008, Comput. Math. Appl..
[3] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[4] Wei Chen,et al. Two-sided bounds of the discretization error for finite elements , 2011 .
[5] M. Krízek,et al. On the maximum angle condition for linear tetrahedral elements , 1992 .
[6] W. C. Rheinboldt,et al. The hypercircle in mathematical physics , 1958 .
[7] Qunlin,et al. GLOBAL SUPERCONVERGENCE OF THE MIXED FINITEELEMENT METHODS FOR 2-D MAXWELL EQUATIONS , 2003 .
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] J. Brandts,et al. Generalization of the Zlámal condition for simplicial finite elements in ℝd , 2011 .
[10] John A. Gregory,et al. Sard kernel theorems on triangular domains with application to finite element error bounds , 1975 .
[11] P. Jamet. Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .
[12] R. B. Simpson,et al. On optimal interpolation triangle incidences , 1989 .
[13] Michal Křížek,et al. On semiregular families of triangulations and linear interpolation , 1991 .
[14] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[15] Miloš Zlámal,et al. On the finite element method , 1968 .
[16] Sergey Korotov,et al. On the equivalence of ball conditions for simplicial finite elements in Rd , 2009, Appl. Math. Lett..
[17] Sergey Korotov,et al. On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..