The maximum angle condition is not necessary for convergence of the finite element method

We show that the famous maximum angle condition in the finite element analysis is not necessary to achieve the optimal convergence rate when simplicial finite elements are used to solve elliptic problems. This condition is only sufficient. In fact, finite element approximations may converge even though some dihedral angles of simplicial elements tend to π.

[1]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[2]  Sergey Korotov,et al.  On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions , 2008, Comput. Math. Appl..

[3]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[4]  Wei Chen,et al.  Two-sided bounds of the discretization error for finite elements , 2011 .

[5]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[6]  W. C. Rheinboldt,et al.  The hypercircle in mathematical physics , 1958 .

[7]  Qunlin,et al.  GLOBAL SUPERCONVERGENCE OF THE MIXED FINITEELEMENT METHODS FOR 2-D MAXWELL EQUATIONS , 2003 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  J. Brandts,et al.  Generalization of the Zlámal condition for simplicial finite elements in ℝd , 2011 .

[10]  John A. Gregory,et al.  Sard kernel theorems on triangular domains with application to finite element error bounds , 1975 .

[11]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[12]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[13]  Michal Křížek,et al.  On semiregular families of triangulations and linear interpolation , 1991 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[15]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[16]  Sergey Korotov,et al.  On the equivalence of ball conditions for simplicial finite elements in Rd , 2009, Appl. Math. Lett..

[17]  Sergey Korotov,et al.  On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..