Perturbational self-similar solutions for multi-dimensional camassa-holm-type equations

In this article, we sutdy a multi-component Camassa-Holm-type system. By employing the characteristic method, we obtain a class of perturbational self-similar solutions with elliptical symmetry, whose velocity components are governed by the generalized Emden equations. In particular, when n = 1, these solutions constitute a generalization of that obtained by Yuen in [38]. Interestingly, numerical simulations show that the analytical solutions obtained can be used to describe the drifting phenomena of shallow water flows. In addition, the method proposed can be extended to other mathematical physics models such as higher-dimensional Hunter-Saxton equations and Degasperis-Procesi equations.

[1]  Shinar Kouranbaeva The Camassa–Holm equation as a geodesic flow on the diffeomorphism group , 1998, math-ph/9807021.

[2]  Jonatan Lenells Weak geodesic flow and global solutions of the Hunter-Saxton equation , 2007 .

[3]  A 2-component $\mu$-Hunter-Saxton equation , 2010, 1010.4454.

[4]  Martin Kohlmann,et al.  THE GEOMETRY OF THE TWO-COMPONENT CAMASSA-HOLM AND DEGASPERIS-PROCESI EQUATIONS , 2010, 1009.0188.

[5]  Darryl D. Holm,et al.  Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation , 2003, nlin/0312048.

[6]  W. Strauss,et al.  Stability of peakons , 2000 .

[7]  A. Fokas,et al.  Bäcklund transformations for hereditary symmetries , 1981 .

[8]  Zhaoyang Yin,et al.  On the Structure of Solutions to the Periodic Hunter-Saxton Equation , 2004, SIAM J. Math. Anal..

[9]  G. Falqui,et al.  On a Camassa-Holm type equation with two dependent variables , 2005, nlin/0505059.

[11]  Boris Khesin,et al.  Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms , 2008, 0803.3078.

[12]  I. F. Barna,et al.  Self-Similar Solutions of Three-Dimensional Navier—Stokes Equation , 2011, 1102.5504.

[13]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[14]  Jonatan Lenells,et al.  Integrable Evolution Equations on Spaces of Tensor Densities and Their Peakon Solutions , 2009, 0903.4134.

[15]  Yong Zhou,et al.  On Solutions to a Two‐Component Generalized Camassa‐Holm Equation , 2010 .

[16]  Manwai Yuen Self-Similar Blowup Solutions to the 2-Component Camassa-Holm Equations , 2010, 1007.0962.

[17]  William D. Lakin,et al.  Topics in ordinary differential equations , 1982 .

[18]  J. K. Hunter,et al.  On a completely integrable nonlinear hyperbolic variational equation , 1994 .

[19]  A. Constantin,et al.  TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems , 2002 .

[20]  Marcus Wunsch,et al.  Global Existence for the Generalized Two-Component Hunter–Saxton System , 2010, 1009.1688.

[21]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[22]  J. Lenells The Hunter–Saxton equation describes the geodesic flow on a sphere , 2007 .

[23]  Jonatan Lenells,et al.  Riemannian geometry on the diffeomorphism group of the circle , 2007 .

[24]  J. K. Hunter,et al.  Dynamics of director fields , 1991 .

[25]  Youjin Zhang,et al.  A Two-component Generalization of the Camassa-Holm Equation and its Solutions , 2005, nlin/0501028.

[26]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[27]  J. David Logan,et al.  An Introduction to Nonlinear Partial Differential Equations , 1994 .

[28]  Darryl D. Holm,et al.  Two-component CH system: inverse scattering, peakons and geometry , 2010, Inverse Problems.

[29]  Darryl D. Holm,et al.  Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Hongli An,et al.  Supplement to "Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in RN" [Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 4524-4528] , 2013, Commun. Nonlinear Sci. Numer. Simul..

[31]  Manwai Yuen,et al.  Self-Similar Solutions with Elliptic Symmetry for the Compressible Euler and Navier-Stokes Equations in R N , 2011, 1104.3687.

[32]  Boris Kolev,et al.  Lie Groups and Mechanics: An Introduction , 2004, math-ph/0402052.

[33]  Manwai Yuen,et al.  Perturbational blowup solutions to the 2-component Camassa–Holm equations , 2010, 1012.1770.

[34]  François Gay-Balmaz WELL-POSEDNESS OF HIGHER DIMENSIONAL CAMASSA-HOLM EQUATIONS , 2009 .

[35]  A. Manwell A variational principle for steady homenergic compressible flow with finite shocks , 1980 .

[36]  R. Danchin A note on well-posedness for Camassa-Holm equation , 2003 .

[37]  Marcus Wunsch,et al.  The Generalized Hunter-Saxton System , 2010, SIAM J. Math. Anal..

[38]  Jonatan Lenells,et al.  On the N =2 supersymmetric Camassa-Holm and Hunter-Saxton equations , 2008, 0809.0077.

[39]  M. Kohlmann A note on multi-dimensional Camassa–Holm-type systems on the torus , 2011, 1108.1553.

[40]  L. Molinet On Well-Posedness Results for Camassa-Holm Equation on the Line: A Survey , 2004 .