The Satisfiability Threshold for k-XORSAT

We consider "unconstrained" random $k$-XORSAT, which is a uniformly random system of $m$ linear non-homogeneous equations in $\mathbb{F}_2$ over $n$ variables, each equation containing $k \geq 3$ variables, and also consider a "constrained" model where every variable appears in at least two equations. Dubois and Mandler proved that $m/n=1$ is a sharp threshold for satisfiability of constrained 3-XORSAT, and analyzed the 2-core of a random 3-uniform hypergraph to extend this result to find the threshold for unconstrained 3-XORSAT. We show that $m/n=1$ remains a sharp threshold for satisfiability of constrained $k$-XORSAT for every $k\ge 3$, and we use standard results on the 2-core of a random $k$-uniform hypergraph to extend this result to find the threshold for unconstrained $k$-XORSAT. For constrained $k$-XORSAT we narrow the phase transition window, showing that $m-n \to -\infty$ implies almost-sure satisfiability, while $m-n \to +\infty$ implies almost-sure unsatisfiability.

[1]  David Gamarnik,et al.  Random MAX SAT, random MAX CUT, and their phase transitions , 2003 .

[2]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[3]  Michael Molloy,et al.  The solution space geometry of random linear equations , 2011, Random Struct. Algorithms.

[4]  Richard M. Karp,et al.  The rank of sparse random matrices over finite fields , 1997, Random Struct. Algorithms.

[5]  B. Pittel,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998 .

[6]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[7]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[8]  Mohammad Taghi Hajiaghayi,et al.  Random MAX SAT, random MAX CUT, and their phase transitions , 2003, SODA '03.

[9]  Colin Cooper,et al.  On the rank of random matrices , 2000, Random Struct. Algorithms.

[10]  Vlady Ravelomanana,et al.  Random 2-XORSAT at the Satisfiability Threshold , 2008, LATIN.

[11]  Boris G. Pittel,et al.  How Frequently is a System of 2-Linear Boolean Equations Solvable? , 2010, Electron. J. Comb..

[12]  Andrea Montanari,et al.  Tight Thresholds for Cuckoo Hashing via XORSAT , 2009, ICALP.

[13]  S. Zabell,et al.  Rank deficiency in sparse random GF$[2]$ matrices , 2012, 1211.5455.

[14]  B. Pittel Paths in a random digital tree: limiting distributions , 1986, Advances in Applied Probability.

[15]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[16]  V. F. Kolchin,et al.  Random Graphs: Contents , 1998 .

[17]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[18]  B. Pittel,et al.  The Satisfiability Threshold for $k$-XORSAT, using an alternative proof , 2012, 1212.3822.

[19]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[20]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[21]  Nadia Creignou,et al.  Smooth and sharp thresholds for random k-XOR-CNF satisfiability , 2003, RAIRO Theor. Informatics Appl..

[22]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[23]  Michael Molloy,et al.  Cores in random hypergraphs and Boolean formulas , 2005, Random Struct. Algorithms.

[24]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[25]  Béla Bollobás,et al.  The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.

[26]  Marco Chiesa,et al.  On the Resiliency of Randomized Routing Against Multiple Edge Failures , 2016, ICALP.

[27]  Colin Cooper,et al.  The cores of random hypergraphs with a given degree sequence , 2004, Random Struct. Algorithms.

[28]  Eduardo Sany Laber,et al.  LATIN 2008: Theoretical Informatics, 8th Latin American Symposium, Búzios, Brazil, April 7-11, 2008, Proceedings , 2008, Lecture Notes in Computer Science.

[29]  Colin J. Thompson,et al.  Mathematical Statistical Mechanics , 1972 .