Expansions of Algebras and Superalgebras and Some Applications

[1]  F. Izaurieta,et al.  Eleven-dimensional gauge theory for the M-algebra as an Abelian semigroup expansion of $\mathfrak{osp} ( 32 | 1 )$ , 2006, hep-th/0606225.

[2]  M. Mills What('s) Theory? , 2008 .

[3]  L. Ionescu On Deformation Theory and Quantization , 2008 .

[4]  J. A. Azcárraga,et al.  BPS preons and higher spin theory in D=4, 6, 10 , 2006, hep-th/0612277.

[5]  S. Vaula' On the underlying E11 symmetry of the D = 11 free differential algebra , 2006, hep-th/0612130.

[6]  F. Izaurieta,et al.  Expanding Lie (super)algebras through abelian semigroups , 2006, hep-th/0606215.

[7]  J. Edelstein,et al.  Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert lagrangian , 2006, hep-th/0605174.

[8]  Kentaroh Yoshida,et al.  Non-relativistic AdS branes and Newton-Hooke superalgebra , 2006, hep-th/0605124.

[9]  J. Edelstein,et al.  (Super-)Gravities of a different sort , 2006, hep-th/0605186.

[10]  J. Zanelli Lecture notes on Chern-Simons (super-)gravities. Second edition (February 2008) , 2005, hep-th/0502193.

[11]  J. Zanelli Lecture notes on Chern-Simons (super-)gravities , 2005 .

[12]  J. A. Azcárraga,et al.  On the formulation of D = 11 supergravity and the composite nature of its three-form gauge field , 2004, hep-th/0409100.

[13]  J. M. Izquierdo,et al.  On the underlying gauge group structure of D = 11 supergravity , 2004, hep-th/0406020.

[14]  M. Hatsuda,et al.  Wess–Zumino terms for AdS D-branes , 2004, hep-th/0405202.

[15]  J. M. Izquierdo,et al.  Extensions, expansions, Lie algebra cohomology and enlarged superspaces , 2004, hep-th/0401033.

[16]  J. M. Izquierdo,et al.  BPS preons, generalized holonomies, and D = 11 supergravities , 2003, hep-th/0312266.

[17]  S. Iso,et al.  Noncommutative superspace, supermatrix and lowest Landau level , 2003, hep-th/0306251.

[18]  J. M. Izquierdo,et al.  Generating Lie and gauge free differential (super)algebras by expanding Maurer–Cartan forms and Chern–Simons supergravity , 2002, hep-th/0212347.

[19]  M. Hatsuda,et al.  Wess-Zumino term for the AdS superstring and generalized Inönü-Wigner contraction , 2001, hep-th/0106114.

[20]  J. M. Izquierdo,et al.  Superalgebra cohomology, the geometry of extended superspaces and superbranes , 2001, hep-th/0105125.

[21]  J. M. Izquierdo,et al.  BPS states in M theory and twistorial constituents. , 2001, Physical review letters.

[22]  Evelyn Weimar-Woods CONTRACTIONS, GENERALIZED INÖNÜ-WIGNER CONTRACTIONS AND DEFORMATIONS OF FINITE-DIMENSIONAL LIE ALGEBRAS , 2000 .

[23]  M. Hatsuda,et al.  BPS states carrying fermionic brane charges , 2000, hep-th/0001214.

[24]  M. Sakaguchi IIB-branes and new spacetime superalgebras , 1999, hep-th/9909143.

[25]  J. M. Izquierdo,et al.  The geometry of branes and extended superspaces , 1999, hep-th/9904137.

[26]  M. Sakaguchi Type-II superstrings and new spacetime superalgebras , 1998, hep-th/9809113.

[27]  P. Townsend M-Theory from Its Superalgebra , 1997, hep-th/9712004.

[28]  H. Hammer Topological extensions of Noether charge algebras carried by Dp-branes , 1997, hep-th/9711009.

[29]  P. Townsend,et al.  M-theory superalgebra from the M-5-brane , 1997, hep-th/9708003.

[30]  E. Young,et al.  Thermodynamical fluctuations of meson fields for the Zimanyi-Moszkowski model , 1997 .

[31]  I. Bars A case for 14 dimensions , 1997, hep-th/9704054.

[32]  E. Sezgin The M-algebra , 1996, hep-th/9609086.

[33]  P. Townsend Four lectures on M theory , 1996, hep-th/9612121.

[34]  P. Bouwknegt Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics , 1996 .

[35]  J. A. Azcárraga,et al.  Deformed and extended Galilei group Hopf algebras , 1996, q-alg/9602032.

[36]  J. M. Izquierdo,et al.  Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics: A first look at cohomology of groups and related topics , 1995 .

[37]  Evelyn Weimar-Woods Contractions of Lie algebras: Generalized Inönü-Wigner contractions versus graded contractions , 1995 .

[38]  E. Sezgin,et al.  Super p-brane theories and new spacetime superalgebras , 1995, hep-th/9504140.

[39]  M. Olmo,et al.  Cayley-Klein algebras as graded contractions of so(N + 1) , 1993, hep-th/9312126.

[40]  R. Jackiw Higher Symmetries in Lower-Dimensional Models , 1993 .

[41]  J. Lukierski,et al.  New quantum Poincaré algebra and κ-deformed field theory , 1992 .

[42]  Cangemi,et al.  Gauge-invariant formulations of lineal gravities. , 1992, Physical review letters.

[43]  Foster,et al.  Isovector stretched-state excitations in the 20Ne, 24Mg, 28Si, and 32S(p,n) reactions at 136 MeV. , 1992, Physical review. C, Nuclear physics.

[44]  Harvey,et al.  Evanescent black holes. , 1991, Physical review. D, Particles and fields.

[45]  E. Celeghini,et al.  Contractions of quantum groups , 1992 .

[46]  P. Fré,et al.  Supergravity and Superstrings: A Geometric Perspective , 1991 .

[47]  P. Fré,et al.  Supergravity and Superstrings: A Geometric Perspective: (In 3 Volumes) , 1991 .

[48]  J. Patera,et al.  Discrete and continuous graded contractions of representations of Lie algebras , 1991 .

[49]  J. Patera,et al.  Discrete and continuous graded contractions of Lie algebras and superalgebras , 1991 .

[50]  P. Fré,et al.  Supergravity and superstrings: A Geometric perspective.Vol 1 , 1991 .

[51]  E. Celeghini,et al.  Three-dimensional quantum groups from contractions of SU(2) q , 1990 .

[52]  Townsend,et al.  Topological extensions of the supersymmetry algebra for extended objects. , 1989, Physical review letters.

[53]  Michael B. Green,et al.  Super-translations, superstrings and Chern-Simons forms , 1989 .

[54]  Townsend,et al.  Superspace geometry and classification of supersymmetric extended objects. , 1989, Physical review letters.

[55]  V. Man'ko,et al.  Group Theoretical Methods in Physics , 1987 .

[56]  B. Binegar Cohomology and deformations of lie superalgebras , 1986 .

[57]  V. Aldaya,et al.  A note on the meaning of covariant derivatives in supersymmetry , 1985 .

[58]  E. Lord Geometrical interpretation of Inönü-Wigner contractions , 1985 .

[59]  V. Aldaya,et al.  Cohomology, central extensions, and (dynamical) groups , 1985 .

[60]  A. Proeyen,et al.  N=1 supersymmetry algebras in d=2,3,4 mod 8 , 1982 .

[61]  P. Fré,et al.  Geometric Supergravity in d = 11 and Its Hidden Supergroup , 1982 .

[62]  P. Nieuwenhuizen Free graded differential superalgebras , 1982 .

[63]  E. Celeghini,et al.  Contractions of group representations. — II , 1981 .

[64]  E. Celeghini,et al.  Contractions of group representations-I , 1981 .

[65]  E. Celeghini,et al.  Contractions of group representations. - III , 1981 .

[66]  P. Fré,et al.  Geometric Supergravity in D = 11 and Its Hidden Supergroup , 1981 .

[67]  D. Arnal,et al.  Geometrical theory of contractions of groups and representations , 1979 .

[68]  A. Lichnerowicz Deformation theory and quantization , 1979 .

[69]  E. Cremmer,et al.  Supergravity in theory in 11 dimensions , 1978 .

[70]  F. Bayen,et al.  Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .

[71]  F. Bayen,et al.  Deformation theory and quantization. II. Physical applications , 1978 .

[72]  Dennis Sullivan,et al.  Infinitesimal computations in topology , 1977 .

[73]  M. Flato,et al.  Deformations of Poisson brackets, Dirac brackets and applications , 1976 .

[74]  J. Vey Déformation du crochet de poisson sur une variété symplectique , 1975 .

[75]  R. Haag,et al.  All possible generators of supersymmetries of the S-matrix , 1975 .

[76]  R. Gilmore Rank 1 Expansions , 1972 .

[77]  Robert Hermann,et al.  Vector bundles in mathematical physics , 1970 .

[78]  R. Richardson On the rigidity of semi-direct products of Lie algebras , 1967 .

[79]  M. Levy-nahas Deformation and Contraction of Lie Algebras , 1967 .

[80]  A. Nijenhuis,et al.  Deformations of Lie Algebra Structures , 1967 .

[81]  R. Hermann Analytic continuation of group representations , 1966 .

[82]  A. Nijenhuis,et al.  COHOMOLOGY AND DEFORMATIONS IN GRADED LIE ALGEBRAS , 1966 .

[83]  R. Hermann Analytic continuation of group representations. III , 1966 .

[84]  Murray Gerstenhaber,et al.  On the Deformation of Rings and Algebras , 1964 .

[85]  Eugene J. Saletan,et al.  Contraction of Lie Groups , 1961 .

[86]  E. Wigner,et al.  On the Contraction of Groups and Their Representations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[87]  I. Segal A class of operator algebras which are determined by groups , 1951 .

[88]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.