Paraoxonase-2 contributes to promoting lipid metabolism and mitochondrial function via autophagy activation

[1]  S. Pouwels,et al.  Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss , 2022, BMC Endocrine Disorders.

[2]  X. Guo,et al.  Palmitate impairs the autophagic flux to induce p62-dependent apoptosis through the upregulation of CYLD in NRCMs. , 2021, Toxicology.

[3]  Q. Qi,et al.  Emerging Roles of Impaired Autophagy in Fatty Liver Disease and Hepatocellular Carcinoma , 2021, International journal of hepatology.

[4]  P. Pinton,et al.  Mitochondrial Oxidative Stress and “Mito-Inflammation”: Actors in the Diseases , 2021, Biomedicines.

[5]  G. Manco,et al.  Human Paraoxonase-2 (PON2): Protein Functions and Modulation , 2021, Antioxidants.

[6]  M. Longo,et al.  Mitochondrial dynamics and nonalcoholic fatty liver disease (NAFLD): new perspectives for a fairy-tale ending? , 2021, Metabolism: clinical and experimental.

[7]  Michael J. Munson,et al.  GAK and PRKCD are positive regulators of PRKN-independent mitophagy , 2020, Nature Communications.

[8]  Y. Bahk,et al.  Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells , 2020, Scientific Reports.

[9]  E. Morselli,et al.  Palmitic acid reduces the autophagic flux in hypothalamic neurons by impairing autophagosome-lysosome fusion and endolysosomal dynamics , 2020, Molecular & cellular oncology.

[10]  Jibiao Wu,et al.  An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease , 2020, BioMed research international.

[11]  S. Morini,et al.  Lipophagy Impairment Is Associated With Disease Progression in NAFLD , 2020, Frontiers in Physiology.

[12]  Po-Yuan Ke Mitophagy in the Pathogenesis of Liver Diseases † , 2020, Cells.

[13]  Hongliang Li,et al.  Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. , 2020, Free radical biology & medicine.

[14]  C. Garza-Lombó,et al.  Redox Homeostasis, Oxidative Stress and Mitophagy. , 2020, Mitochondrion.

[15]  G. Juhász,et al.  Autophagosome-lysosome fusion. , 2020, Journal of molecular biology.

[16]  T. Ogihara,et al.  Structure-activity relationship of atorvastatin derivatives for metabolic activation by hydrolases , 2020, Xenobiotica; the fate of foreign compounds in biological systems.

[17]  A. Rovini,et al.  JNK activation and translocation to mitochondria mediates mitochondrial dysfunction and cell death induced by VDAC opening and sorafenib in hepatocarcinoma cells. , 2019, Biochemical pharmacology.

[18]  Kyun-Hwan Kim,et al.  PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway , 2019, Nature Communications.

[19]  Ryan J Schulze,et al.  Lipid Droplet Formation and Lipophagy in Fatty Liver Disease , 2019, Seminars in Liver Disease.

[20]  J. Olzmann,et al.  Dynamics and functions of lipid droplets , 2018, Nature Reviews Molecular Cell Biology.

[21]  Joungmok Kim,et al.  Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life , 2018, Cells.

[22]  T. Yamanaka,et al.  Palmitate-induced lipotoxicity is crucial for the pathogenesis of nonalcoholic fatty liver disease in cooperation with gut-derived endotoxin , 2018, Scientific Reports.

[23]  C. Caruso-Neves,et al.  LPS Induces mTORC1 and mTORC2 Activation During Monocyte Adhesion , 2018, Front. Mol. Biosci..

[24]  J. Lykkesfeldt,et al.  Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease , 2018, Cellular and Molecular Life Sciences.

[25]  D. Klionsky,et al.  Cargo recognition and degradation by selective autophagy , 2018, Nature Cell Biology.

[26]  Yun-Ching Chang,et al.  Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux , 2018, Journal of food and drug analysis.

[27]  Hyun Soon Lee,et al.  Palmitate induces mitochondrial superoxide generation and activates AMPK in podocytes , 2017, Journal of cellular physiology.

[28]  K. Mitra,et al.  Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons , 2017, Autophagy.

[29]  P. Carmeliet,et al.  A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity , 2017, Cell reports.

[30]  G. Cline,et al.  Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport. , 2017, Molecular cell.

[31]  X. Qu,et al.  Kif4A mediate the accumulation and reeducation of THP-1 derived macrophages via regulation of CCL2-CCR2 expression in crosstalking with OSCC , 2017, Scientific Reports.

[32]  L. Ly,et al.  Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes , 2017, Experimental &Molecular Medicine.

[33]  Zhe Wang,et al.  Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence , 2017, Autophagy.

[34]  M. Graef A dividing matter: Drp1/Dnm1-independent mitophagy , 2016, The Journal of cell biology.

[35]  Ah Ram Lee,et al.  Hepatitis B virus–triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response , 2016, Autophagy.

[36]  Deborah A. Brown,et al.  Fluorescent Detection of Lipid Droplets and Associated Proteins , 2016, Current protocols in cell biology.

[37]  E. Bugianesi,et al.  Different Serum Free Fatty Acid Profiles in NAFLD Subjects and Healthy Controls after Oral Fat Load , 2016, International journal of molecular sciences.

[38]  M. Trujillo,et al.  Interplay between oxidant species and energy metabolism , 2015, Redox biology.

[39]  A dividing matter : Drp 1 / Dnm 1-independent mitophagy , 2016 .

[40]  M. Czaja,et al.  Function of Autophagy in Nonalcoholic Fatty Liver Disease , 2016, Digestive Diseases and Sciences.

[41]  Ning Wang,et al.  The Role of Oxidative Stress and Antioxidants in Liver Diseases , 2015, International journal of molecular sciences.

[42]  Nektarios Tavernarakis,et al.  Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis , 2015, Cell Death and Differentiation.

[43]  S. Ryter,et al.  Oxidative stress and autophagy: Crucial modulators of kidney injury , 2015, Redox biology.

[44]  F. Nassir,et al.  Role of Mitochondria in Nonalcoholic Fatty Liver Disease , 2014, International journal of molecular sciences.

[45]  B. Schermer,et al.  Breaking the chain at the membrane: paraoxonase 2 counteracts lipid peroxidation at the plasma membrane , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  D. Shih,et al.  Inflammation, infection, cancer and all that…the role of paraoxonases. , 2014, Advances in experimental medicine and biology.

[47]  M. Murphy,et al.  Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. , 2013, Cell metabolism.

[48]  Dan-shen Zhang,et al.  Oxidative stress, mitochondrial damage and neurodegenerative diseases , 2013, Neural regeneration research.

[49]  J. Iredale,et al.  Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. , 2013, Biochimica et biophysica acta.

[50]  M. J. López-Armada,et al.  Mitochondrial dysfunction and the inflammatory response. , 2013, Mitochondrion.

[51]  M. Garelnabi,et al.  Antioxidant and Anti-Inflammatory Role of Paraoxonase 1: Implication in Arteriosclerosis Diseases , 2012, North American journal of medical sciences.

[52]  J. Kirwan,et al.  Role of ceramides in nonalcoholic fatty liver disease , 2012, Trends in Endocrinology & Metabolism.

[53]  C. Hoppel,et al.  Oxidation of Fatty Acids Is the Source of Increased Mitochondrial Reactive Oxygen Species Production in Kidney Cortical Tubules in Early Diabetes , 2012, Diabetes.

[54]  J. Zidan,et al.  Paraoxonase Activity and Expression Is Modulated by Therapeutics in Experimental Rat Nonalcoholic Fatty Liver Disease , 2012, International journal of hepatology.

[55]  Thomas R. Cox,et al.  Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer , 2011, Disease Models & Mechanisms.

[56]  S. Reddy,et al.  Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. , 2009, Antioxidants & redox signaling.

[57]  R. Karmeli,et al.  Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cysteine 284. , 2011, Free radical biology & medicine.

[58]  C. Hellerbrand,et al.  Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells , 2009, Cell Research.

[59]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[60]  Mitsuru Nenoi,et al.  Regulation of , 2004 .

[61]  Dan S. Tawfik,et al.  The development of human sera tests for HDL-bound serum PON1 and its lipolactonase activitys⃞ Published, JLR Papers in Press, April 13, 2007. , 2007, Journal of Lipid Research.

[62]  Aldons J Lusis,et al.  Paraoxonase-2 Deficiency Aggravates Atherosclerosis in Mice Despite Lower Apolipoprotein-B-containing Lipoproteins , 2006, Journal of Biological Chemistry.

[63]  Janardan K Reddy,et al.  Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. , 2006, American journal of physiology. Gastrointestinal and liver physiology.

[64]  R. Sunahara,et al.  Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificitiess⃞s⃞ The online version of this article (available at http://www.jlr.org) contains additional text, figures, and references. Published, JLR Papers in Press, March 16, 2005. DOI 10.1194/jlr.M , 2005, Journal of Lipid Research.

[65]  T. Schallert,et al.  Homeostasis and life , 1979 .