The dorsal shell wall structure of Mesozoic ammonoids

The study of pristine preserved shells of Mesozoic Ammonoidea shows different types of construction and formation of the dorsal shell wall. We observe three major types: (i) The vast majority of Ammonoidea, usually planispirally coiled, has a prismatic reduced dorsal shell wall which consists of an outer organic component (e.g., wrinkle layer), which is the first layer to be formed, and the subsequently formed dorsal inner prismatic layer. The dorsal mantle tissue suppresses the formation of the outer prismatic layer and nacreous layer. With the exception of the outer organic component, secretion of a shell wall is omitted at the aperture. A prismatic reduced dorsal shell wall is always secreted immediately after the hatching during early teleoconch formation. Due to its broad distribution in (planispiral) Ammonoidea, the prismatic reduced dorsal shell wall is probably the general state. (ii) Some planispirally coiled Ammonoidea have a nacreous reduced dorsal shell wall which consists of three mineralized layers: two prismatic layers (primary and secondary dorsal inner prismatic layer) and an enclosed nacreous layer (secondary dorsal nacreous layer). The dorsal shell wall is omitted at the aperture and was secreted in the rear living chamber. Its layers are a continuation of an umbilical shell doubling (reinforcement by additional shell layers) that extends towards the ventral crest of the preceding whorl. The nacreous reduced dorsal shell wall is formed in the process of ontogeny following a prismatic reduced dorsal shell wall. (iii) Heteromorph and some planispirally coiled taxa secrete a complete dorsal shell wall which forms a continuation of the ventral and lateral shell layers. It is formed during ontogeny following a prismatic reduced dorsal shell wall or a priori. The construction is identical with the ventral and lateral shell wall, including a dorsal nacreous layer. The wide distribution of the ability to form dorsal nacre indicates that it is a plesiomorphic trait which either was passed on from gyrocone ammonoid ancestors or (re-)developed in post-Triassic ammonoids.

[1]  H. Keupp,et al.  Imbricate radial sculpture: a convergent feature within externally shelled cephalopods , 2016 .

[2]  R. Hoffmann,et al.  Form and Formation of Flares and Parabolae Based on New Observations of the Internal Shell Structure in Lytoceratid and Perisphinctid Ammonoids , 2016, Acta Palaeontologica Polonica.

[3]  A. Mironenko Wrinkle layer and supracephalic attachment area: implications for ammonoid paleobiology , 2015 .

[4]  N. Landman,et al.  Ammonoid Shell Microstructure , 2015 .

[5]  M. Yacobucci Macroevolution and Paleobiogeography of Jurassic-Cretaceous Ammonoids , 2015 .

[6]  C. Klug,et al.  The coarse wrinkle layer of Palaeozoic ammonoids: new evidence from the Early Carboniferous of Morocco , 2014 .

[7]  D. Funabara,et al.  Novel Genes Participating in the Formation of Prismatic and Nacreous Layers in the Pearl Oyster as Revealed by Their Tissue Distribution and RNA Interference Knockdown , 2014, PloS one.

[8]  K. Bandel Cephalopod Shell Structure and General Mechanisms of Shell Formation , 2013 .

[9]  K. Bandel,et al.  Glossary of Skeletal Biomineralization , 2013 .

[10]  Benjamin Marie,et al.  Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell , 2012, Proceedings of the National Academy of Sciences.

[11]  H. Summesberger,et al.  Early Ontogeny of three Callovian Ammonite Genera (Binatisphinctes, Kosmoceras (Spinikosmoceras) and Hecticoceras) from Ryazan (Russia) , 2012 .

[12]  H. Summesberger,et al.  Adolescent Bactritoid, Orthoceroid, Ammonoid and Coleoid Shells from the Upper Carboniferous and Lower Permian of the South Urals , 2012 .

[13]  L. Doguzhaeva Functional significance of parabolae, interpreted on the basis of shell morphology, ultrastructure and chemical analyses of the Callovian ammonite Indosphinctes (Ammonoidea: Perisphinctidae), Central Russia , 2012 .

[14]  J. Nouet,et al.  Is the pearl layer a reversed shell? A re-examination of the theory of pearl formation through physical characterizations of pearl and shell developmental stages in Pinctada margaritifera , 2011 .

[15]  Benjamin Marie,et al.  Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization , 2010, BMC Genomics.

[16]  P. Harries,et al.  Effect of diagenesis on the Sr, O, and C isotope composition of late Cretaceous mollusks from the Western Interior Seaway of North America , 2010, American Journal of Science.

[17]  S. Bengtson,et al.  Structural and morphological indicators of mode of life in the Aptian lytoceratid ammonoid Eogaudryceras , 2010 .

[18]  H. Keupp Desmoceras (Pseudouhligella) intrapunctatum n. sp. (Ammonoidea) aus dem Unter-Albium von NW-Madagaskar mit Ritzstreifen , 2008 .

[19]  G. H. Unites,et al.  SUBMICROSCOPIC SHELL STRUCTURES IN EARLY GROWTH-STAGES OF MAASTRICHTIAN AMMONITES (SA , 2008 .

[20]  C. Klug,et al.  AMMONOID SHELL STRUCTURES OF PRIMARY ORGANIC COMPOSITION , 2007 .

[21]  C. Klug,et al.  The black layer in cephalopods from the German Muschelkalk (Triassic) , 2004 .

[22]  J. Dommergues,et al.  L'analyse phylogénétique chez les ammonites : état des lieux et perspectives , 2004 .

[23]  H. Keupp,et al.  Phylogeny of the aptychi‐possessing Neoammonoidea (Aptychophora nov., Cephalopoda) , 2002 .

[24]  N. Landman,et al.  Dorsal shell wall in ammonoids , 2001 .

[25]  N. Landman,et al.  Mode and Rate of Growth in Ammonoids , 1996 .

[26]  H. Mutvei,et al.  Shell ultrastructure, muscle-scars, and buccal apparatus in ammonoids , 1993 .

[27]  L. Doguzhaeva Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars , 1991 .

[28]  Charles Mangold Ammonoideen: Leben zwischen skylla und charybdis, U. Lehmann, in: Haeckel Bücherei, Bd. 2. Enke Verl, Stuttgart (1990), 257, ISSN: 0936 8515. Prix: 38 DM, ISBN: 3 432 98861 3 , 1991 .

[29]  Y. Dauphin Rapports entre microstructure, composition chimique et diagenèse chez quelques ammonites mésozoïques , 1989 .

[30]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  N. Landman Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western Interior of North America : systematics, developmental patterns, and life history. Bulletin of the AMNH ; v. 185, article 2 , 1987 .

[32]  H. Mutvei,et al.  Functional interpretation of inner shell layers in Triassic ceratid ammonites , 1986 .

[33]  J. G. Carter,et al.  Classification and Phylogenetic Significance of Molluscan Shell Microstructure , 1985 .

[34]  I. Mikhailova,et al.  The genus Luppovia and the phylogeny of Cretaceous heteromorphic ammonoids , 1982 .

[35]  W. Blind Über die entstehung und funktion der lobenlinie bei ammonoideen , 1975 .

[36]  M. K. Howarth THE SHELL STRUCTURE OF THE LIASSIC AMMONITE FAMILY DACTYLIOCERATIDAE , 1975 .

[37]  H. Hansen,et al.  Further remarks on the post-embryonic Hypophylloceras shell , 1975 .

[38]  U. Bayer Die Runzelschicht — ein Leichtbauelement der Ammonitenschale , 1974 .

[39]  C. Kulicki Remarks on the embryogeny and postembryonal development of ammonites , 1974 .

[40]  G. Westermann Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids , 1971 .

[41]  A. Siehl,et al.  Ammonoids: Early Ontogeny of Ultra-microscopical Shell Structure , 1968, Nature.

[42]  D. F. B. Palframan,et al.  Mode of Early Shell Growth in the Ammonite Promicroceras marstonense Spath , 1967, Nature.

[43]  WRINKLE LAYER AND DORSAL MUSCLE SCARS IN AMAUROCERAS FERRUGINEUM FROM THE DOMERIAN OF NW-GERMANY , 2022 .

[44]  Stockholm HARRY MUTVEI PTYCHOCERAS-A HETEROMORPHIC LYTOCERATID WITH TRUNCATED SHELL AND MODIFIED ULTRASTRUCTURE ( MOLLUSCA : AMMONOIDEA ) , 2022 .