Imposing displacements in implicit direct time integration & a patch test

[1]  Y. Xing,et al.  A two-step time integration method with desirable stability for nonlinear structural dynamics , 2022, European Journal of Mechanics - A/Solids.

[2]  K. Tamma,et al.  A re‐evaluation of overshooting in time integration schemes: The neglected effect of physical damping in the starting procedure , 2022, International Journal for Numerical Methods in Engineering.

[3]  Kaiping Yu,et al.  Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics , 2022, Computer Methods in Applied Mechanics and Engineering.

[4]  S. Eisenträger,et al.  High-order implicit time integration scheme based on Padé expansions , 2021, Computer Methods in Applied Mechanics and Engineering.

[5]  K. Bathe,et al.  Time splitting ratio in the ρ∞-Bathe time integration method for higher-order accuracy in structural dynamics and heat transfer , 2022, Computers & Structures.

[6]  Shanyao Deng,et al.  An improved quartic B-spline based explicit time integration algorithm for structural dynamics , 2022 .

[7]  Delfim Soares,et al.  A novel single-step explicit time-marching procedure with improved dissipative, dispersive and stability properties , 2021 .

[8]  Klaus-Jürgen Bathe,et al.  Transient wave propagations with the Noh-Bathe scheme and the spectral element method , 2021 .

[9]  K. Bathe,et al.  Selecting the load at the intermediate time point of the ρ∞-Bathe time integration scheme , 2021 .

[10]  Klaus-Jürgen Bathe,et al.  Accurate solution of wave propagation problems in elasticity , 2021 .

[11]  Guoliang Qin,et al.  An Overview of High-Order Implicit Algorithms for First-/Second-Order Systems and Novel Explicit Algorithm Designs for First-Order System Representations , 2021, Archives of Computational Methods in Engineering.

[12]  Ningbo Wang,et al.  An improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservation , 2021 .

[13]  Huimin Zhang,et al.  Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods , 2020, Computational Mechanics.

[14]  Yufeng Xing,et al.  On the optimization of n-sub-step composite time integration methods , 2020, Nonlinear Dynamics.

[15]  K. Bathe,et al.  An analysis of implicit time integration schemes for wave propagations , 2020 .

[16]  K. Bathe,et al.  For direct time integrations: A comparison of the Newmark and ρ∞-Bathe schemes , 2019 .

[17]  K. Bathe,et al.  The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method , 2019, Computers & Structures.

[18]  Klaus-Jürgen Bathe,et al.  Further insights into an implicit time integration scheme for structural dynamics , 2018, Computers & Structures.

[19]  K. Bathe,et al.  An explicit time integration scheme for the analysis of wave propagations , 2013 .

[20]  K. Bathe,et al.  Performance of an implicit time integration scheme in the analysis of wave propagations , 2013 .

[21]  Long Chen FINITE ELEMENT METHOD , 2013 .

[22]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[23]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[24]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[25]  Kumar K. Tamma,et al.  Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics , 2004 .

[26]  Kumar K. Tamma,et al.  The time dimension: A theory towards the evolution, classification, characterization and design of computational algorithms for transient/ dynamic applications , 2000 .

[27]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[28]  P. J. Pahl,et al.  Development of an implicit method with numerical dissipation from a generalized ingle-step algorithm for structural dynamics , 1988 .

[29]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[30]  G. Bazzi,et al.  The ρ‐family of algorithms for time‐step integration with improved numerical dissipation , 1982 .

[31]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[32]  T. Hughes,et al.  Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .

[33]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[34]  K. Park An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations , 1975 .

[35]  R. D. Krieg Unconditional Stability in Numerical Time Integration Methods , 1973 .

[36]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .