A Posteriori Error Control for DPG Methods

A combination of ideas in least-squares finite element methods with those of hybridized methods recently led to discontinuous Petrov--Galerkin (DPG) finite element methods. They minimize a residual inherited from a piecewise ultraweak formulation in a nonstandard, locally computable, dual norm. This paper establishes a general a posteriori error analysis for the natural norms of the DPG schemes under conditions equivalent to a priori stability estimates. It is proven that the locally computable residual norm of any discrete function is a lower and an upper error bound up to explicit data approximation errors. The presented abstract framework for a posteriori error analysis applies to known DPG discretizations of Laplace and Lame equations and to a novel DPG method for the stress-velocity formulation of Stokes flow with symmetric stress approximations. Since the error control does not rely on the discrete equations, it applies to inexactly computed or otherwise perturbed solutions within the discrete space...

[1]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[2]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[3]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[4]  D. Schötzau,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem , 2003 .

[5]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[6]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[7]  Peter Hansbo,et al.  Energy norm a posteriori error estimates for discontinuous Galerkin approximations of the linear elasticity problem , 2011 .

[8]  L. Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[9]  John E. Osborn,et al.  Regularity of solutions of the Stokes problem in a polygonal domain , 1976 .

[10]  Zhiqiang Cai,et al.  A Multigrid Method for the Pseudostress Formulation of Stokes Problems , 2007, SIAM J. Sci. Comput..

[11]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[12]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[13]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[14]  Jay Gopalakrishnan,et al.  Symmetric Nonconforming Mixed Finite Elements for Linear Elasticity , 2011, SIAM J. Numer. Anal..

[15]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[16]  Pavel B. Bochev,et al.  The Agmon–Douglis–Nirenberg Setting for Least-Squares Finite Element Methods , 2009 .

[17]  Dongho Kim,et al.  A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..

[18]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[19]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..

[20]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[21]  Thomas P. Wihler Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems , 2006, Math. Comput..

[22]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[23]  Carsten Carstensen,et al.  A unifying theory of a posteriori error control for discontinuous Galerkin FEM , 2009, Numerische Mathematik.

[24]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[25]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[26]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[27]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[28]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[29]  Nathan V. Roberts,et al.  The DPG method for the Stokes problem , 2014, Comput. Math. Appl..

[30]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[31]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[32]  Weifeng Qiu,et al.  A locking-free $$hp$$ DPG method for linear elasticity with symmetric stresses , 2012, Numerische Mathematik.

[33]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[34]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[35]  Leszek F. Demkowicz,et al.  A primal DPG method without a first-order reformulation , 2013, Comput. Math. Appl..

[36]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[37]  Paul Houston,et al.  Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem , 2005, J. Sci. Comput..