Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes

We use a new class of complex dispersion characteristics to analyze threshold properties of gain-guided vertical-cavity lasers. The analysis gives a fundamental gain limit for single transverse mode oscillation. The general behavior of higher order transverse modes is described by rather universal diagrams that are useful as a guideline for practical device design. A comparison between gain- and index-guided devices shows differences in effective modal gains and wavelength separations between fundamental and neighboring higher order modes. For near threshold operation of gain-guided lasers, the suppression of higher transverse modes is generally improved for large mirror reflectivities. The discussion of real devices considers the important influence of the current induced parasitic temperature profile. >

[1]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[2]  D. Gloge Weakly guiding fibers. , 1971, Applied optics.

[3]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[4]  H. Casey,et al.  Heterostructure lasers , 1978 .

[5]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[6]  L. Coldren,et al.  Design of Fabry-Perot surface-emitting lasers with a periodic gain structure , 1989 .

[7]  Niloy K. Dutta,et al.  Analysis of current spreading, carrier diffusion, and transverse mode guiding in surface emitting lasers , 1990 .

[8]  B. Tell,et al.  Characteristics of top-surface-emitting GaAs quantum-well lasers , 1990, IEEE Photonics Technology Letters.

[9]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[10]  L. Coldren,et al.  InGaAs vertical-cavity surface-emitting lasers , 1991 .

[11]  K. Yodoshi,et al.  GaAs buried heterostructure vertical cavity top-surface emitting lasers , 1991 .

[12]  Scott W. Corzine,et al.  Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors , 1992 .

[13]  Mark R. Pinto,et al.  Elimination of heterojunction band discontinuities by modulation doping , 1992 .

[14]  G. Sztefka,et al.  Theoretical investigation of transverse mode characteristics of vertical-cavity surface-emitting lasers , 1992, QELS 1992.

[15]  K. Choquette,et al.  Vertical-cavity surface-emitting laser diodes fabricated by in situ dry etching and molecular beam epitaxial regrowth , 1993, IEEE Photonics Technology Letters.

[16]  Daryoosh Vakhshoori,et al.  Top‐surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies , 1993 .

[17]  Low threshold voltage vertical cavity surface-emitting laser , 1993 .

[18]  K. Kojima,et al.  Transverse mode control of vertical-cavity top-surface-emitting lasers , 1993, IEEE Photonics Technology Letters.

[19]  Marlin W. Focht,et al.  Reduction of p-doped mirror electrical resistance of GaAs/AlGaAs vertical-cavity surface-emitting lasers by delta doping , 1993 .

[20]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[21]  R. Michalzik,et al.  Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes , 1993 .

[22]  R. Michalzik,et al.  Spatial hole burning effects in gain-guided vertical cavity laser diodes , 1993, Proceedings of LEOS '93.

[23]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .