Immunophenotyping of acute leukemias and myelodysplastic syndromes

Alberto Orfao,* Francisco Ortuno, Maria de Santiago, Antonio Lopez, and Jesus San Miguel Servicio General de Citometria, Universidad de Salamanca, Salamanca, Spain Centro de Investigacion del Cancer y Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain Servicio de Hematologia y Oncologia Medica, Hospital General Universitario J.M. Morales Meseguer, Murcia, Spain Servicio de Hematologia, Hospital Universitario de Salamanca, Salamanca, Spain

[1]  M. Greaves,et al.  Terminal transferase-positive human bone marrow cells exhibit the antigenic phenotype of common acute lymphoblastic leukemia. , 1979, Journal of immunology.

[2]  A. Órfão,et al.  Immunophenotypic analysis of myelodysplastic syndromes. , 2003, Haematologica.

[3]  H. Zola,et al.  Surface marker analysis in acute myeloid leukaemia and correlation with FAB classification , 1986, British journal of haematology.

[4]  C. Civin,et al.  Flow cytometric analysis of human bone marrow: I. Normal erythroid development. , 1987, Blood.

[5]  A Orfao,et al.  Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). , 1995, Leukemia.

[6]  C. Bloomfield,et al.  Acute myeloid leukemia with 11q23 translocations: myelomonocytic immunophenotype by multiparameter flow cytometry , 1998, Leukemia.

[7]  H Stein,et al.  Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). , 1984, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[8]  M. Greaves,et al.  Phenotypic heterogeneity and cellular origins of T cell malignancies. , 1981, Leukemia research.

[9]  V. Deneys,et al.  Immunological classification of acute myeloblastic leukemias: relevance to patient outcome , 2003, Leukemia.

[10]  I. Bernstein,et al.  Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin) , 2002, Leukemia.

[11]  A. Órfão,et al.  Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression , 2001, Leukemia.

[12]  M. Borowitz,et al.  Surface antigen phenotype can predict TEL-AML1 rearrangement in childhood B-precursor ALL: a Pediatric Oncology Group study , 1998, Leukemia.

[13]  A. Órfão,et al.  Acute leukemia after a primary myelodysplastic syndrome: immunophenotypic, genotypic, and clinical characteristics. , 1991, Blood.

[14]  D. Campana,et al.  Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. , 2002, Blood.

[15]  M. Tallman Monoclonal antibody therapies in leukemias. , 2002, Seminars in hematology.

[16]  N. Villamor,et al.  CD56 expression could be associated with monocytic differentiation in acute myeloid leukemia with t(8;21). , 2001, Haematologica.

[17]  A. Órfão,et al.  Myelodysplastic syndrome: a search for minimal diagnostic criteria. , 1999, Leukemia research.

[18]  Attila Tárnok,et al.  Clinical applications of laser scanning cytometry. , 2002, Cytometry.

[19]  J. Hernández-Rivas,et al.  The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. , 1999, Haematologica.

[20]  S. Raimondi,et al.  Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. , 1991, Blood.

[21]  E. Paietta Proposals for the immunological classification of acute leukemias. , 1995, Leukemia.

[22]  A. Órfão,et al.  Incidence and characteristics of CD4(+)/HLA DRhi dendritic cell malignancies. , 2004, Haematologica.

[23]  D. Campana Determination of minimal residual disease in leukaemia patients , 2003, British journal of haematology.

[24]  A. Órfão,et al.  Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. , 2001, Blood.

[25]  B. Bain,et al.  Revised guideline on immunophenotyping in acute leukaemias and chronic lymphoproliferative disorders. , 2002, Clinical and laboratory haematology.

[26]  A. Órfão,et al.  Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. , 1997, Blood.

[27]  B. Dörken,et al.  Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1 , 2000, Leukemia.

[28]  A. Órfão,et al.  Immunophenotypic analysis of mast cells in mastocytosis: When and how to do it. Proposals of the Spanish Network on Mastocytosis (REMA) , 2004, Cytometry. Part B, Clinical cytometry.

[29]  N. Villamor,et al.  Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells , 2003, Leukemia.

[30]  A. Órfão,et al.  Immunophenotypic characteristics of PB-mobilised CD34+ hematopoietic progenitor cells. , 2001, Journal of biological regulators and homeostatic agents.

[31]  T. Lister,et al.  Terminal Transferase Enzyme Assay and Immunological Membrane Markers in the Diagnosis of Leukaemia: a Multiparameter Analysis of 300 Cases , 1980, British journal of haematology.

[32]  R. Foà,et al.  Multimarker phenotypic characterization of adult and childhood acute lymphoblastic leukaemia: an Italian multicentre study , 1985, British journal of haematology.

[33]  A. Órfão,et al.  Immunologic monitoring in adults with acute lymphoblastic leukemia , 2003, Current oncology reports.

[34]  A Orfao,et al.  Impact of immunophenotyping on management of acute leukemias. , 1999, Haematologica.

[35]  A. Órfão,et al.  Leukemias with megakaryoblastic involvement: clinical, hematologic, and immunologic characteristics. , 1988, Blood.

[36]  B. Dörken,et al.  Inhibition of in vitro spontaneous apoptosis by IL-7 correlates with bcl-2 up-regulation, cortical/mature immunophenotype, and better early cytoreduction of childhood T-cell acute lymphoblastic leukemia. , 2000, Blood.

[37]  A. Órfão,et al.  Minimal residual disease in leukaemia patients. , 2001, The Lancet. Oncology.

[38]  E. Reinherz,et al.  Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Yvan Cornet,et al.  Immunophenotypic clustering of myelodysplastic syndromes. , 2002, Blood.

[40]  H. Gralnick,et al.  Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML‐MO) , 1991, British journal of haematology.

[41]  A. Venditti,et al.  Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. , 2000, Blood.

[42]  T Hamblin,et al.  International scoring system for evaluating prognosis in myelodysplastic syndromes. , 1997, Blood.

[43]  M. Borowitz,et al.  Flow cytometry in the diagnosis of acute leukemia. , 2001, Seminars in hematology.

[44]  F. Behm,et al.  Correlation of karyotype and immunophenotype in childhood acute lymphoblastic leukemia. , 1988, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  Norma Gutiérrez,et al.  Minimal residual disease in adolescent ( older than 14 years ) and adult acute lymphoblastic leukemias : early immunophenotypic evaluation has high clinical value , 2003 .

[46]  A. Orfao,et al.  Aplicación de la citometría de flujo al diagnóstico y seguimiento inmunofenotípico de las leucemias agudas , 2002 .

[47]  A. Órfão,et al.  BIOMED-1 concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings , 2001, Leukemia.

[48]  D C Arthur,et al.  Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. , 2001, Blood.

[49]  M R Loken,et al.  Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. , 1987, Blood.

[50]  R. Valenta,et al.  Expression of mast cell tryptase by myeloblasts in a group of patients with acute myeloid leukemia. , 2001, Blood.

[51]  A. Órfão,et al.  Immunological detection of blast cell subpopulations in acute myeloblastic leukemia at diagnosis: implications for minimal residual disease studies. , 1995, Leukemia.

[52]  L. Terstappen,et al.  Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. , 1990, Leukemia.

[53]  M. Ames,et al.  Selected pharmacologic characteristics of idarubicin and idarubicinol. , 1992, Leukemia.

[54]  L. Terstappen,et al.  Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. , 1990, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology.

[55]  M. Borowitz,et al.  Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. , 1988, Blood.

[56]  Myeloid-antigen expression in adult acute lymphoblastic leukemia. , 1987 .

[57]  H. Gralnick,et al.  Proposals for the classification of the myelodysplastic syndromes , 1982, British journal of haematology.

[58]  D. Catovsky,et al.  Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. , 1985, Annals of internal medicine.

[59]  W. Hiddemann,et al.  Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry for definition of leukemia-associated immunophenotypes and determination of their frequencies in normal bone marrow. , 2003, Haematologica.

[60]  G. Janossy,et al.  Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations. , 1980, Blood.

[61]  M. Elghetany,et al.  Surface marker abnormalities in myelodysplastic syndromes. , 1998, Haematologica.

[62]  A. Órfão,et al.  The Reliability and Specificity of c-kit for the Diagnosis of Acute Myeloid Leukemias and Undifferentiated Leukemias , 1998 .

[63]  A. Órfão,et al.  BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. , 2001, Leukemia.

[64]  M. Greaves,et al.  Membrane marker analysis of 'lymphoid' and myeloid blast crisis in PH1 positive (chronic myeloid) leukemia. , 1977, Haematology and blood transfusion.

[65]  E. Borden,et al.  Depression of interferon production after A.L.S. treatment. , 1969, Lancet.

[66]  M. Greaves,et al.  ACUTE LYMPHOBLASTIC LEUKÆMIA IN CHILDREN: CLASSIFICATION AND PROGNOSIS , 1977, The Lancet.

[67]  B. Drénou,et al.  Clinical and biologic features of CD4(+)CD56(+) malignancies. , 2002, Blood.

[68]  A. Órfão,et al.  Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions. , 1999, Clinical chemistry.

[69]  A. Órfão,et al.  Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL , 1999, Leukemia.

[70]  A. Órfão,et al.  Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(-)/CD16(+)/HLA-DR(+)/CD14(-/lo) cells, CD14(+) monocytes, and CD16(-) dendritic cells. , 2001, Clinical immunology.

[71]  A. Órfão,et al.  Flow cytometric analysis of cerebrospinal fluid samples and its usefulness in routine clinical practice. , 2002, American journal of clinical pathology.

[72]  M. Greaves,et al.  Patterns of gene expression and the cellular origins of human leukaemias. , 1978, Biochimica et biophysica acta.

[73]  F. Behm,et al.  Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. , 1992, Blood.

[74]  N. Villamor,et al.  Immunophenotypic findings in acute myeloid leukemia with FLT3 internal tandem duplication. , 2003, Haematologica.

[75]  O. Haas,et al.  Immunophenotype of hematologic neoplasms with a translocation t(8;21). , 1993, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[76]  J. Miguel,et al.  Characterization of aberrant phenotypes in acute myeloblastic leukemia , 1995, Annals of Hematology.

[77]  H. Deeg,et al.  Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. , 2003, Blood.

[78]  A. Órfão,et al.  Quantitative multiparametric immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML1 ALLs identification , 2000, Leukemia.

[79]  N. Harris,et al.  The World Health Organization (WHO) classification of the myeloid neoplasms. , 2002, Blood.

[80]  C. Rudin,et al.  B-cell development and maturation. , 1998, Seminars in oncology.

[81]  H. Gralnick,et al.  Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group , 1976, British journal of haematology.

[82]  D. Catovsky,et al.  Outcome of biphenotypic acute leukemia. , 1999, Haematologica.

[83]  M R Loken,et al.  Quantitative Comparison of Myeloid Antigens on Five Lineages of Mature Peripheral Blood Cells , 1990, Journal of leukocyte biology.

[84]  B. Lichtiger,et al.  Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome , 2001 .

[85]  D. Head,et al.  Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience , 1999, Leukemia.

[86]  W Hiddemann,et al.  Flow cytometric characterization of acute myeloid leukemia. Part II. Phenotypic heterogeneity at diagnosis. , 1992, Leukemia.

[87]  A. Órfão,et al.  Detection of abnormalities in B‐cell differentiation pattern is a useful tool to predict relapse in precursor‐B‐ALL , 1999, British journal of haematology.

[88]  F. Prósper,et al.  Sequential analysis of CD34+ and CD34− cell subsets in peripheral blood and leukapheresis products from breast cancer patients mobilized with SCF plus G-CSF and cyclophosphamide , 2001, Leukemia.

[89]  A. Órfão,et al.  The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). , 1998, Blood.

[90]  K. Ault Between the idea and the reality falls the shadow: clinical flow cytometry comes of age? , 1988, Cytometry. Supplement : the journal of the Society for Analytical Cytology.

[91]  M. Béné Immunophenotyping of myelodysplasia. , 2005, Haematologica.

[92]  J. Shuster,et al.  Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. , 1993, Blood.

[93]  A. Órfão,et al.  BIOMED-1 Concerted Action report: Flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL) , 2000, Leukemia.

[94]  T. Lister,et al.  Expression of human T and B lymphocyte cell-surface markers on leukaemic cells. , 1974, Lancet.

[95]  Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. , 1998 .