Entwurf einer lernenden Kaskadenregelung für ein nichtinvasives kontinuierliches Blutdruckmesssystem

Zusammenfassung Im vorliegenden Beitrag entwerfen wir für ein neuartiges Blutdruckmesssystem eine kaskadierte Regelung aus zwei unterlagerten klassischen Rückführungen mit Vorfilter und einem iterativ lernenden Regler. Wir zeigen, dass die Bandbreite der klassischen Regelung durch das Messrauschen der Ultraschallsonde stark eingeschränkt ist und dass diese Einschränkung umgangen werden kann, wenn die repetitive Natur des Regelungsproblems ausgenutzt wird.

[1]  Svante Gunnarsson,et al.  Time and frequency domain convergence properties in iterative learning control , 2002 .

[2]  Eric Rogers,et al.  ILC for FES-based stroke rehabilitation of hand and wrist , 2012, 2012 IEEE International Symposium on Intelligent Control.

[3]  Thomas Seel,et al.  Iterative Learning Control for Variable Pass Length Systems , 2011 .

[4]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[5]  G Parati,et al.  Blood pressure measuring devices: recommendations of the European Society of Hypertension , 2001, BMJ : British Medical Journal.

[6]  Eric Rogers,et al.  Iterative learning control of FES applied to the upper extremity for rehabilitation , 2009 .

[7]  U. Kertzscher,et al.  Continuous blood pressure measurement with ultrasound , 2012, Biomedizinische Technik. Biomedical engineering.

[8]  Eyal Dassau,et al.  Closed-Loop Control of Artificial Pancreatic $\beta$ -Cell in Type 1 Diabetes Mellitus Using Model Predictive Iterative Learning Control , 2010, IEEE Transactions on Biomedical Engineering.

[9]  Thomas Seel,et al.  Iterative Learning Cascade Control of Continuous Noninvasive Blood Pressure Measurement , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[10]  Jie Liu,et al.  Iterative Learning Control Based on Radial Basis Function Network for Exoskeleton Arm , 2011 .

[11]  W H Lewis,et al.  The Evolution of Clinical Sphygmomanometry. , 1941, Bulletin of the New York Academy of Medicine.

[12]  David H. Owens,et al.  Iterative learning control - An optimization paradigm , 2015, Annu. Rev. Control..

[13]  Francis J. Doyle,et al.  Survey on iterative learning control, repetitive control, and run-to-run control , 2009 .

[14]  F. Veglio,et al.  Accuracy of the blood pressure measurement. , 2006, Minerva Cardioangiologica : a Journal on Cardiovascular Pathophysiology, Clinical Medicine and Therapy.

[15]  Richard W. Longman,et al.  Simple learning control made practical by zero-phase filtering: applications to robotics , 2002 .

[16]  G. Parati,et al.  Blood pressure measurement in research and in clinical practice: recent evidence , 2004, Current opinion in nephrology and hypertension.

[17]  Robert Riener,et al.  Adaptive Patientenunterstützung für Rehabilitationsroboter (Adaptive Patient Support for Rehabilitation Robots) , 2010, Autom..

[18]  Guillaume Morel,et al.  Physiological Motion Compensation in Robotized Surgery using Force Feedback Control , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[20]  Wojciech Paszke,et al.  Robust finite frequency range iterative learning control design and experimental verification , 2013 .