The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere

We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz $s$-energy of $N$ points on the unit sphere in $\mathbb{R}^{d+1}$, $d\geq 1$. The conjectures are based on analytic continuation assumptions (with respect to $s$) for the coefficients in the asymptotic expansion (as $N\to \infty$) of the optimal $s$-energy.

[1]  G. Pólya,et al.  Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .

[2]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[3]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[4]  G. Björck,et al.  Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .

[5]  J. Friedel,et al.  Solid state physics. Volume 5: Edited by F. Seitz and D. Turnbull. Academic Press, Inc., New York, 1957. Vol. 5:455 pp., $11.00. , 1958 .

[6]  R. Alexander,et al.  On the sum of distances betweenn points on a sphere. II , 1972 .

[7]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[8]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .

[9]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[10]  Ralph Alexander,et al.  Extremal problems of distance geometry related to energy integrals , 1974 .

[11]  R. Alexander Generalized sums of distances , 1975 .

[12]  T. Apostol Introduction to analytic number theory , 1976 .

[13]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .

[14]  Harvey Cohn,et al.  Advanced Number Theory , 1980 .

[15]  Glyn Harman,et al.  Sums of distances between points of a sphere , 1982 .

[16]  J. Beck Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .

[17]  Alexander A. Berezin Asymptotics of the maximum number of repulsive particles on a spherical surface , 1986 .

[18]  S. Lang Introduction to Arakelov Theory , 1988 .

[19]  Gerold Wagner,et al.  On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .

[20]  S. J. Patterson,et al.  HARMONIC ANALYSIS ON SYMMETRIC SPACES AND APPLICATIONS , 1990 .

[21]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[22]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[23]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[24]  Edward B. Saff,et al.  Electrons on the Sphere , 1995 .

[25]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[26]  S. Smale Mathematical problems for the next century , 1998 .

[27]  B. R. Patton Solid State Physics: Solid State Physics , 2001 .

[28]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[29]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[30]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[31]  V. Maymeskul,et al.  Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.

[32]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[33]  T. Hales The Kepler conjecture , 1998, math/9811078.

[34]  Salvatore Torquato,et al.  New Conjectural Lower Bounds on the Optimal Density of Sphere Packings , 2006, Exp. Math..

[35]  E. Saff,et al.  Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.

[36]  Johann S. Brauchart,et al.  About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case , 2006 .

[37]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[38]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .

[39]  E. Saff,et al.  Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets , 2006, math-ph/0602025.

[40]  D. Hardin,et al.  Riesz s-Equilibrium Measures on d-Rectifiable Sets as s Approaches d , 2008, 0808.3802.

[41]  E. Saff,et al.  The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N , 2008, 0808.1291.

[42]  Johann S. Brauchart,et al.  Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..

[43]  Achill Schürmann,et al.  Ground states and formal duality relations in the Gaussian core model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  GEROLD WAGNER,et al.  ON MEANS OF DISTANCES ON THE SURFACE OF A SPHERE (LOWER BOUNDS) , 2012 .