The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere
暂无分享,去创建一个
[1] G. Pólya,et al. Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .
[2] I. J. Schoenberg. Positive definite functions on spheres , 1942 .
[3] L. Tóth. Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .
[4] G. Björck,et al. Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .
[5] J. Friedel,et al. Solid state physics. Volume 5: Edited by F. Seitz and D. Turnbull. Academic Press, Inc., New York, 1957. Vol. 5:455 pp., $11.00. , 1958 .
[6] R. Alexander,et al. On the sum of distances betweenn points on a sphere. II , 1972 .
[7] N. S. Landkof. Foundations of Modern Potential Theory , 1972 .
[8] K. Stolarsky. Sums of distances between points on a sphere. II , 1972 .
[9] C. W. Clenshaw,et al. The special functions and their approximations , 1972 .
[10] Ralph Alexander,et al. Extremal problems of distance geometry related to energy integrals , 1974 .
[11] R. Alexander. Generalized sums of distances , 1975 .
[12] T. Apostol. Introduction to analytic number theory , 1976 .
[13] William R. Smith,et al. Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .
[14] Harvey Cohn,et al. Advanced Number Theory , 1980 .
[15] Glyn Harman,et al. Sums of distances between points of a sphere , 1982 .
[16] J. Beck. Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .
[17] Alexander A. Berezin. Asymptotics of the maximum number of repulsive particles on a spherical surface , 1986 .
[18] S. Lang. Introduction to Arakelov Theory , 1988 .
[19] Gerold Wagner,et al. On means of distances on the surface of a sphere. II. (Upper bounds) , 1990 .
[20] S. J. Patterson,et al. HARMONIC ANALYSIS ON SYMMETRIC SPACES AND APPLICATIONS , 1990 .
[21] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[22] Stephen Smale,et al. Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..
[23] E. Saff,et al. Minimal Discrete Energy on the Sphere , 1994 .
[24] Edward B. Saff,et al. Electrons on the Sphere , 1995 .
[25] E. Saff,et al. Asymptotics for minimal discrete energy on the sphere , 1995 .
[26] S. Smale. Mathematical problems for the next century , 1998 .
[27] B. R. Patton. Solid State Physics: Solid State Physics , 2001 .
[28] E. Saff,et al. Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.
[29] Henry Cohn,et al. New upper bounds on sphere packings I , 2001, math/0110009.
[30] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .
[31] V. Maymeskul,et al. Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.
[32] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[33] T. Hales. The Kepler conjecture , 1998, math/9811078.
[34] Salvatore Torquato,et al. New Conjectural Lower Bounds on the Optimal Density of Sphere Packings , 2006, Exp. Math..
[35] E. Saff,et al. Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.
[36] Johann S. Brauchart,et al. About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case , 2006 .
[37] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[38] Paul C. Leopardi. A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .
[39] E. Saff,et al. Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets , 2006, math-ph/0602025.
[40] D. Hardin,et al. Riesz s-Equilibrium Measures on d-Rectifiable Sets as s Approaches d , 2008, 0808.3802.
[41] E. Saff,et al. The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N , 2008, 0808.1291.
[42] Johann S. Brauchart,et al. Optimal logarithmic energy points on the unit sphere , 2008, Math. Comput..
[43] Achill Schürmann,et al. Ground states and formal duality relations in the Gaussian core model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[44] GEROLD WAGNER,et al. ON MEANS OF DISTANCES ON THE SURFACE OF A SPHERE (LOWER BOUNDS) , 2012 .