Planar terahertz waveguides based on complementary split ring resonators.

We experimentally demonstrate planar plasmonic THz waveguides using metal films that are periodically perforated with complementary split ring resonators (CSRRs). The waveguide transmission spectra exhibit numerous transmission resonances. While the geometry is commonly used in developing negative index materials, the excitation geometry used here does not allow for conventional metamaterial response. Instead, we show that all of the observed resonances can be determined from the geometrical properties of the CSRR apertures. Surprisingly, the Bragg condition does not appear to limit the frequency extent of the observed resonances. The results suggest that metamaterial-inspired geometries may be useful for developing THz guided-wave devices.

[1]  G. Park,et al.  Frequency-dependent refractive index of one-dimensionally structured thick metal film , 2007 .

[2]  Esteban Moreno,et al.  Terahertz wedge plasmon polaritons. , 2009, Optics letters.

[3]  Min Qiu,et al.  Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface , 2007 .

[4]  Ajay Nahata,et al.  Electric field vector characterization of terahertz surface plasmons. , 2007, Optics express.

[5]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[6]  Marco Rahm,et al.  Experimental and numerical studies of terahertz surface waves on a thin metamaterial film. , 2009, Optics letters.

[7]  A. Agrawal,et al.  Planar plasmonic terahertz guided-wave devices. , 2008 .

[8]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[9]  A. Agrawal,et al.  Engineering the Propagation Properties of Planar Plasmonic Terahertz Waveguides , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[11]  Francisco Falcone,et al.  Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. , 2009, Optics express.

[12]  David R. Smith,et al.  Calculation and measurement of bianisotropy in a split ring resonator metamaterial , 2006 .

[13]  Shanhui Fan,et al.  Mechanism for designing metallic metamaterials with a high index of refraction. , 2005, Physical Review Letters.

[14]  A. Agrawal,et al.  Direct measurement of the Gouy phase shift for surface plasmon-polaritons. , 2007, Optics express.

[15]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[16]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[17]  Stefan A. Maier,et al.  Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces , 2006 .

[18]  L Martin-Moreno,et al.  Domino plasmons for subwavelength terahertz circuitry. , 2009, Optics express.

[19]  J. Pendry,et al.  Surfaces with holes in them: new plasmonic metamaterials , 2005 .

[20]  Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures. , 2009, Optics express.

[21]  Omar M. Eldaiki,et al.  Deep subwavelength waveguiding and focusing based on designer surface plasmons. , 2010, Optics express.