Entangled and sequential quantum protocols with dephasing.

Sequences of commuting quantum operators can be parallelized using entanglement. This transformation is behind some optimal quantum metrology protocols and recent results on quantum circuit complexity. We show that dephasing quantum maps in arbitrary dimension can also be parallelized. This implies that for general dephasing noise the protocol with entanglement is not more fragile than the corresponding sequential protocol and, conversely, the sequential protocol is not less effective than the entangled one. We derive this result using tensor networks. Furthermore, we only use transformations strictly valid within string diagrams in dagger compact closed categories. Therefore, they apply verbatim to other theories, such as geometric quantization and topological quantum field theory. This clarifies and characterizes to some extent the role of entanglement in general quantum theories.

[1]  A. Luis,et al.  Metrological resolution and minimum uncertainty states in linear and nonlinear signal detection schemes , 2009 .

[2]  B. Sundaram,et al.  Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.

[3]  J. Baez Quantum Quandaries: a Category-Theoretic Perspective , 2004, quant-ph/0404040.

[4]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[5]  L. Jiang,et al.  Quantum-limited measurements of atomic scattering properties , 2007, 0706.3376.

[6]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[7]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.

[8]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[9]  Martin Nilsson,et al.  Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..

[10]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[11]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[12]  C. M. Care Probabilistic and Statistical Aspects of Quantum Theory: North-Holland Series in Statistics and Probability Vol 1 , 1983 .

[13]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[14]  Alex Monras,et al.  Optimal quantum estimation of loss in bosonic channels. , 2007, Physical review letters.

[15]  J. Geremia,et al.  Magnetometry via a double-pass continuous quantum measurement of atomic spin , 2009, 0903.2050.

[16]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  Tae-Woo Lee,et al.  Optimization of quantum interferometric metrological sensors in the presence of photon loss , 2009, 0908.3008.

[18]  David N. Yetter,et al.  FROBENIUS ALGEBRAS AND 2D TOPOLOGICAL QUANTUM FIELD THEORIES (London Mathematical Society Student Texts 59) , 2004 .

[19]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[20]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[21]  Alex Monras Optimal phase measurements with pure Gaussian states , 2006 .

[22]  Alfredo Luis,et al.  Nonlinear transformations and the Heisenberg limit , 2004 .

[23]  C. Caves,et al.  Quantum-circuit guide to optical and atomic interferometry , 2009, 0909.0803.

[24]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[25]  A. Luis,et al.  Breaking the Heisenberg limit with inefficient detectors , 2005 .

[26]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[27]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[28]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[29]  E. Bagan,et al.  Phase estimation for thermal Gaussian states , 2008, 0811.3408.

[30]  J. Dunningham,et al.  Sub-shot-noise-limited measurements with Bose-Einstein condensates , 2004 .

[31]  P. Windpassinger,et al.  Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit , 2008, Proceedings of the National Academy of Sciences.

[32]  H. Busemann Advances in mathematics , 1961 .

[33]  Vlatko Vedral,et al.  Quantum Correlations in Mixed-State Metrology , 2010, 1003.1174.

[34]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[35]  J Eisert,et al.  Unifying variational methods for simulating quantum many-body systems. , 2007, Physical review letters.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  E. Bagan,et al.  Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .

[38]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[39]  Samson Abramsky,et al.  AMS Proceedings of Symposia in Applied Mathematics , 2012 .

[40]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[41]  Alfredo Luis,et al.  Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.

[42]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[43]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[44]  Animesh Datta,et al.  On decoherence in quantum clock synchronization , 2006 .

[45]  Akio Fujiwara,et al.  Estimation of SU(2) operation and dense coding: An information geometric approach , 2001 .

[46]  Sergio Boixo,et al.  Parameter estimation with mixed-state quantum computation , 2007, 0708.1330.

[47]  C. Macchiavello,et al.  Optimal quantum circuits for general phase estimation. , 2006, Physical review letters.

[48]  Yuri Gurevich,et al.  Logic in Computer Science , 1993, Current Trends in Theoretical Computer Science.

[49]  Stefano Olivares,et al.  Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.

[50]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[51]  Jiafu Xu,et al.  Quantum programming languages , 2008, Frontiers of Computer Science in China.

[52]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[53]  F. Verstraete,et al.  Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.

[54]  Terry Rudolph,et al.  Quantum communication complexity of establishing a shared reference frame. , 2003, Physical review letters.

[55]  R. J. Sewell,et al.  Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.

[56]  U. Tillmann Topology, Geometry and Quantum Field Theory , 2004 .

[57]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[58]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[59]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[60]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[61]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[62]  J. M. BoardmanAbstract,et al.  Contemporary Mathematics , 2007 .

[63]  Bob Coecke,et al.  New Structures for Physics , 2011 .

[64]  林 正人 Quantum information : an introduction , 2006 .

[65]  A. Datta,et al.  Quantum-limited metrology with product states , 2007, 0710.0285.

[66]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[67]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[68]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[69]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[70]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[71]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[72]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[73]  Jonathan A. Jones,et al.  Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.

[74]  F. Verstraete,et al.  Computational complexity of projected entangled pair states. , 2007, Physical review letters.

[75]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[76]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[77]  W. Munro,et al.  Entanglement is not a critical resource for quantum metrology , 2009, 0906.1027.

[78]  G. Segal The Definition of Conformal Field Theory , 1988 .

[79]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[80]  Giuseppe Longo Mathematical Structures in Computer Science , 2012 .

[81]  Robust strategies for lossy quantum interferometry , 2008, 0809.5039.

[82]  W. Marsden I and J , 2012 .

[83]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[84]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[85]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[86]  Michael Atiyah,et al.  Topological quantum field theories , 1988 .

[87]  A. Fujiwara Strong consistency and asymptotic efficiency for adaptive quantum estimation problems , 2006 .

[88]  G Chiribella,et al.  Quantum circuit architecture. , 2007, Physical review letters.

[89]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[90]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[91]  Masahito Hayashi Parallel Treatment of Estimation of SU(2) and Phase Estimation , 2006 .

[92]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[93]  Uriel Feige,et al.  Proceedings of the thirty-ninth annual ACM symposium on Theory of computing , 2007, STOC 2007.

[94]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.