Entangled and sequential quantum protocols with dephasing.
暂无分享,去创建一个
[1] A. Luis,et al. Metrological resolution and minimum uncertainty states in linear and nonlinear signal detection schemes , 2009 .
[2] B. Sundaram,et al. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.
[3] J. Baez. Quantum Quandaries: a Category-Theoretic Perspective , 2004, quant-ph/0404040.
[4] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[5] L. Jiang,et al. Quantum-limited measurements of atomic scattering properties , 2007, 0706.3376.
[6] Joachim Kock,et al. Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .
[7] Carlton M. Caves,et al. Qubit metrology and decoherence , 2007, 0705.1002.
[8] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[9] Martin Nilsson,et al. Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..
[10] S. Massar,et al. Optimal quantum clocks , 1998, quant-ph/9808042.
[11] G. Vidal. Entanglement renormalization. , 2005, Physical review letters.
[12] C. M. Care. Probabilistic and Statistical Aspects of Quantum Theory: North-Holland Series in Statistics and Probability Vol 1 , 1983 .
[13] G. D’Ariano,et al. Theoretical framework for quantum networks , 2009, 0904.4483.
[14] Alex Monras,et al. Optimal quantum estimation of loss in bosonic channels. , 2007, Physical review letters.
[15] J. Geremia,et al. Magnetometry via a double-pass continuous quantum measurement of atomic spin , 2009, 0903.2050.
[16] Moore,et al. Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[17] Tae-Woo Lee,et al. Optimization of quantum interferometric metrological sensors in the presence of photon loss , 2009, 0908.3008.
[18] David N. Yetter,et al. FROBENIUS ALGEBRAS AND 2D TOPOLOGICAL QUANTUM FIELD THEORIES (London Mathematical Society Student Texts 59) , 2004 .
[19] G Chiribella,et al. Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.
[20] Brian J. Smith,et al. Optimal quantum phase estimation. , 2008, Physical review letters.
[21] Alex Monras. Optimal phase measurements with pure Gaussian states , 2006 .
[22] Alfredo Luis,et al. Nonlinear transformations and the Heisenberg limit , 2004 .
[23] C. Caves,et al. Quantum-circuit guide to optical and atomic interferometry , 2009, 0909.0803.
[24] Hiroshi Imai,et al. A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .
[25] A. Luis,et al. Breaking the Heisenberg limit with inefficient detectors , 2005 .
[26] C. Monroe,et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.
[27] Keiji Sasaki,et al. Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.
[28] O. Bagasra,et al. Proceedings of the National Academy of Sciences , 1914, Science.
[29] E. Bagan,et al. Phase estimation for thermal Gaussian states , 2008, 0811.3408.
[30] J. Dunningham,et al. Sub-shot-noise-limited measurements with Bose-Einstein condensates , 2004 .
[31] P. Windpassinger,et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit , 2008, Proceedings of the National Academy of Sciences.
[32] H. Busemann. Advances in mathematics , 1961 .
[33] Vlatko Vedral,et al. Quantum Correlations in Mixed-State Metrology , 2010, 1003.1174.
[34] Griffiths,et al. Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.
[35] J Eisert,et al. Unifying variational methods for simulating quantum many-body systems. , 2007, Physical review letters.
[36] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[37] E. Bagan,et al. Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .
[38] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[39] Samson Abramsky,et al. AMS Proceedings of Symposia in Applied Mathematics , 2012 .
[40] F. Verstraete,et al. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.
[41] Alfredo Luis,et al. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.
[42] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[43] Animesh Datta,et al. Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.
[44] Animesh Datta,et al. On decoherence in quantum clock synchronization , 2006 .
[45] Akio Fujiwara,et al. Estimation of SU(2) operation and dense coding: An information geometric approach , 2001 .
[46] Sergio Boixo,et al. Parameter estimation with mixed-state quantum computation , 2007, 0708.1330.
[47] C. Macchiavello,et al. Optimal quantum circuits for general phase estimation. , 2006, Physical review letters.
[48] Yuri Gurevich,et al. Logic in Computer Science , 1993, Current Trends in Theoretical Computer Science.
[49] Stefano Olivares,et al. Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.
[50] S. Mukamel. Principles of Nonlinear Optical Spectroscopy , 1995 .
[51] Jiafu Xu,et al. Quantum programming languages , 2008, Frontiers of Computer Science in China.
[52] Jonathan P. Dowling,et al. A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.
[53] F. Verstraete,et al. Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.
[54] Terry Rudolph,et al. Quantum communication complexity of establishing a shared reference frame. , 2003, Physical review letters.
[55] R. J. Sewell,et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit , 2010, Nature.
[56] U. Tillmann. Topology, Geometry and Quantum Field Theory , 2004 .
[57] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[58] Jan Kolodynski,et al. Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.
[59] A S Sørensen,et al. Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.
[60] M. W. Mitchell,et al. Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.
[61] Augusto Smerzi,et al. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.
[62] J. M. BoardmanAbstract,et al. Contemporary Mathematics , 2007 .
[63] Bob Coecke,et al. New Structures for Physics , 2011 .
[64] 林 正人. Quantum information : an introduction , 2006 .
[65] A. Datta,et al. Quantum-limited metrology with product states , 2007, 0710.0285.
[66] Klaus Sutner,et al. On σ-Automata , 1988, Complex Syst..
[67] S. Bartlett,et al. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.
[68] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[69] Jian-Wei Pan,et al. De Broglie wavelength of a non-local four-photon state , 2003, Nature.
[70] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[71] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[72] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[73] Jonathan A. Jones,et al. Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.
[74] F. Verstraete,et al. Computational complexity of projected entangled pair states. , 2007, Physical review letters.
[75] Sergio Boixo,et al. Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.
[76] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[77] W. Munro,et al. Entanglement is not a critical resource for quantum metrology , 2009, 0906.1027.
[78] G. Segal. The Definition of Conformal Field Theory , 1988 .
[79] Pieter Kok,et al. General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.
[80] Giuseppe Longo. Mathematical Structures in Computer Science , 2012 .
[81] Robust strategies for lossy quantum interferometry , 2008, 0809.5039.
[82] W. Marsden. I and J , 2012 .
[83] Ross Street,et al. Braided Tensor Categories , 1993 .
[84] E. Knill,et al. Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.
[85] D. Berry,et al. Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.
[86] Michael Atiyah,et al. Topological quantum field theories , 1988 .
[87] A. Fujiwara. Strong consistency and asymptotic efficiency for adaptive quantum estimation problems , 2006 .
[88] G Chiribella,et al. Quantum circuit architecture. , 2007, Physical review letters.
[89] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[90] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[91] Masahito Hayashi. Parallel Treatment of Estimation of SU(2) and Phase Estimation , 2006 .
[92] A. Joyal,et al. The geometry of tensor calculus, I , 1991 .
[93] Uriel Feige,et al. Proceedings of the thirty-ninth annual ACM symposium on Theory of computing , 2007, STOC 2007.
[94] I. Walmsley,et al. Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.