Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12%

In this work, a fully tin‐based, mixed‐organic‐cation perovskite absorber (FA)x(MA)1−xSnI3 (FA = NH2CH = NH2+, MA = CH3NH3+) for lead‐free perovskite solar cells (PSCs) with inverted structure is presented. By optimizing the ratio of FA and MA cations, a maximum power conversion efficiency of 8.12% is achieved for the (FA)0.75(MA)0.25SnI3‐based device along with a high open‐circuit voltage of 0.61 V, which originates from improved perovskite film morphology and inhibits recombination process in the device. The cation‐mixing approach proves to be a facile method for the efficiency enhancement of tin‐based PSCs.

[1]  M. Kanatzidis,et al.  Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead‐Free Perovskite Solar Cells , 2017, Advanced materials.

[2]  A. Jen,et al.  Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells , 2017 .

[3]  Yuanyuan Zhou,et al.  Long Minority‐Carrier Diffusion Length and Low Surface‐Recombination Velocity in Inorganic Lead‐Free CsSnI3 Perovskite Crystal for Solar Cells , 2017 .

[4]  M. Kanatzidis,et al.  Structural Stability, Vibrational Properties, and Photoluminescence in CsSnI3 Perovskite upon the Addition of SnF2. , 2017, Inorganic chemistry.

[5]  M. Wasielewski,et al.  TiO2-ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[6]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[7]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[8]  Yanfa Yan,et al.  Lead‐Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% , 2016, Advanced materials.

[9]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[10]  I. Han,et al.  Improving Performance and Stability of Flexible Planar‐Heterojunction Perovskite Solar Cells Using Polymeric Hole‐Transport Material , 2016 .

[11]  S. Rühle Tabulated values of the Shockley–Queisser limit for single junction solar cells , 2016 .

[12]  N. Zhao,et al.  Organic Cation‐Dependent Degradation Mechanism of Organotin Halide Perovskites , 2016 .

[13]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[14]  Yoshiharu Sato,et al.  Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process. , 2016, The journal of physical chemistry letters.

[15]  Tobin J Marks,et al.  Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[16]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[17]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[18]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[19]  Linfeng Liu,et al.  Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3 , 2014 .

[20]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[21]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[22]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[23]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[24]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[25]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[26]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[27]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[28]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[29]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[30]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[31]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[32]  Teruya Ishihara,et al.  Optical properties of PbI-based perovskite structures , 1994 .

[33]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[34]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .