Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture.

To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH2 -MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25 wt % of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10 %, while for Pebax they were enhanced to 25 and 18 %, respectively. The observed differences in membrane performance in the separation of CO2 from N2 are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases.

[1]  F. Kapteijn,et al.  Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture , 2017 .

[2]  J. Gascón,et al.  Mixed‐Matrix‐Membranen , 2017 .

[3]  J. Gascón,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[4]  B. Smit,et al.  Introduction: Carbon Capture and Separation. , 2017, Chemical reviews.

[5]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.

[6]  C. Téllez,et al.  Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: application to gas separation membranes , 2017 .

[7]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[8]  Tai‐Shung Chung,et al.  Molecularly Tuned Free Volume of Vapor Cross‐Linked 6FDA‐Durene/ZIF‐71 MMMs for H2/CO2 Separation at 150 °C , 2017, Advanced materials.

[9]  F. Kapteijn,et al.  Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test , 2016 .

[10]  Gongpin Liu,et al.  UiO-66-polyether block amide mixed matrix membranes for CO2 separation , 2016 .

[11]  M. Hill,et al.  Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films , 2016 .

[12]  Chongli Zhong,et al.  Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation , 2016 .

[13]  Liangjun Hu,et al.  Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance , 2016, Advanced materials.

[14]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[15]  J. Urban,et al.  Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes , 2016 .

[16]  J. Caro,et al.  Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane. , 2016, ACS applied materials & interfaces.

[17]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[18]  A. Cheetham,et al.  Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes , 2016 .

[19]  Zhengjie Li,et al.  Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture. , 2015, Angewandte Chemie.

[20]  S. Kentish,et al.  The impact of water vapor on CO2 separation performance of mixed matrix membranes , 2015 .

[21]  M. Tsapatsis,et al.  Zeolite membranes - a review and comparison with MOFs. , 2015, Chemical Society reviews.

[22]  S. Kaliaguine,et al.  Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation , 2015 .

[23]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[24]  D. Luebke,et al.  Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles , 2015 .

[25]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[26]  Kang Li,et al.  Synthesis of zeolitic imidazolate framework nanocrystals , 2014 .

[27]  F. Kapteijn,et al.  Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance , 2014 .

[28]  J. Caro,et al.  Comparative permeation studies on three supported membranes: Pure ZIF-8; pure polymethylphenylsiloxane; and mixed matrix membranes , 2014 .

[29]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[30]  J. Long,et al.  CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals† , 2013 .

[31]  C. Téllez,et al.  High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. , 2013, Journal of the American Chemical Society.

[32]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[33]  V. Chen,et al.  Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .

[34]  B. Laird,et al.  A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks , 2012 .

[35]  Ryan P. Lively,et al.  Water and beyond: Expanding the spectrum of large‐scale energy efficient separation processes , 2012 .

[36]  F. Kapteijn,et al.  Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives , 2012 .

[37]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[38]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[39]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[40]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[41]  Xinlei Liu,et al.  An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. , 2011, Angewandte Chemie.

[42]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[43]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[44]  D. Farrusseng,et al.  Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2 , 2011 .

[45]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[46]  D. Farrusseng,et al.  Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. , 2010, Chemical communications.

[47]  D. D. De Vos,et al.  Separation of C(5)-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites. , 2010, Journal of the American Chemical Society.

[48]  M. Fröba,et al.  New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) , 2009 .

[49]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[50]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[51]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[52]  L. Robeson,et al.  The upper bound revisited , 2008 .

[53]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[54]  J. Marrot,et al.  MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and mu3-oxo-centered trinuclear units. , 2006, Journal of the American Chemical Society.

[55]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[56]  F. Taulelle,et al.  Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O , 2005 .

[57]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[58]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[59]  A. Ismail,et al.  Fabrication of carbon membranes for gas separation--a review , 2004 .

[60]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[61]  Young Moo Lee,et al.  Gas permeation of poly(amide-6-b-ethylene oxide) copolymer , 2001 .

[62]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[63]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .