Chemoinformatic characterization of activity and selectivity switches of antiprotozoal compounds.

BACKGROUND Benzimidazole derivatives are promising compounds for the treatment of parasitic infections. The structure-activity relationships of 91 benzimidazoles with activity against Trichomonas vaginalis and Giardia intestinalis were analyzed using a novel activity landscape modeling approach. RESULTS We identified two prominent cases of 'activity switches' and 'selectivity switches' where two R group substitutions in the benzimidazole scaffold completely invert the activity and selectivity pattern for T. vaginalis and G. intestinalis. CONCLUSION A chemoinformatic methodology was used to rapidly identify discrete structural changes around the central scaffold that are associated with large changes in biological activity for each parasite. The structure-activity relationships for the benzimidazole derivatives is smooth for both protozoan with few but markedly important activity cliffs.

[1]  Dimitris K. Agrafiotis,et al.  Single R-Group Polymorphisms (SRPs) and R-Cliffs: An Intuitive Framework for Analyzing and Visualizing Activity Cliffs in a Single Analog Series , 2011, J. Chem. Inf. Model..

[2]  Rajarshi Guha,et al.  Exploring Uncharted Territories: Predicting Activity Clis in Structure-Activity Landscapes , 2012, J. Chem. Inf. Model..

[3]  J. Medina-Franco,et al.  Molecular modeling of some 1H-benzimidazole derivatives with biological activity against Entamoeba histolytica: a comparative molecular field analysis study. , 2007, Bioorganic & medicinal chemistry.

[4]  L. Yépez-Mulia,et al.  Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles. , 2002, European journal of medicinal chemistry.

[5]  L. Yépez-Mulia,et al.  Synthesis, and antiprotozoal and antibacterial activities of S-substituted 4,6-dibromo- and 4,6-dichloro-2-mercaptobenzimidazoles. , 2004, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[6]  Jaime Pérez-Villanueva,et al.  Antiprotozoal activity of proton-pump inhibitors. , 2011, Bioorganic & medicinal chemistry letters.

[7]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[8]  Jürgen Bajorath,et al.  Exploring activity cliffs in medicinal chemistry. , 2012, Journal of medicinal chemistry.

[9]  R. Glen,et al.  Molecular similarity: a key technique in molecular informatics. , 2004, Organic & biomolecular chemistry.

[10]  Gabriel Navarrete-Vázquez,et al.  Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. , 2010, European journal of medicinal chemistry.

[11]  José L. Medina-Franco,et al.  Structure–activity relationships of benzimidazole derivatives as antiparasitic agents: Dual activity-difference (DAD) maps , 2011 .

[12]  Jürgen Bajorath,et al.  Modeling of activity landscapes for drug discovery , 2012, Expert opinion on drug discovery.

[13]  José L. Medina-Franco,et al.  Conditional Probabilistic Analysis for Prediction of the Activity Landscape and Relative Compound Activities , 2013, J. Chem. Inf. Model..

[14]  Gabriel Navarrete-Vázquez,et al.  Synthesis and antiprotozoal activity of some 2-(trifluoromethyl)-1H-benzimidazole bioisosteres. , 2006, European journal of medicinal chemistry.

[15]  Jaime Pérez-Villanueva,et al.  CASE Plots for the Chemotype‐Based Activity and Selectivity Analysis: A CASE Study of Cyclooxygenase Inhibitors , 2012, Chemical biology & drug design.

[16]  A. Martínez-Fernández,et al.  Synthesis and antiparasitic activity of albendazole and mebendazole analogues. , 2003, Bioorganic & medicinal chemistry.

[17]  Austin B. Yongye,et al.  Multitarget Structure-Activity Relationships Characterized by Activity-Difference Maps and Consensus Similarity Measure , 2011, J. Chem. Inf. Model..

[18]  Woody Sherman,et al.  Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments , 2010, J. Chem. Inf. Model..

[19]  Jaime Pérez-Villanueva,et al.  Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. , 2010, Bioorganic & medicinal chemistry.

[20]  Jürgen Bajorath,et al.  MMP-Cliffs: Systematic Identification of Activity Cliffs on the Basis of Matched Molecular Pairs , 2012, J. Chem. Inf. Model..

[21]  A. Bell,et al.  Microtubules as antiparasitic drug targets , 2008, Expert opinion on drug discovery.

[22]  José L. Medina-Franco,et al.  Scanning Structure-Activity Relationships with Structure-Activity Similarity and Related Maps: From Consensus Activity Cliffs to Selectivity Switches , 2012, J. Chem. Inf. Model..

[23]  Jaime Pérez-Villanueva,et al.  Activity landscape modeling of PPAR ligands with dual-activity difference maps. , 2012, Bioorganic & medicinal chemistry.

[24]  R. Castillo,et al.  Synthesis and antiprotozoal activity of novel 1-methylbenzimidazole derivatives. , 2009, Bioorganic & medicinal chemistry.

[25]  Oscar Méndez-Lucio,et al.  Identifying Activity Cliff Generators of PPAR Ligands Using SAS Maps , 2012, Molecular informatics.

[26]  Clemencia Pinilla,et al.  Rapid Scanning Structure-Activity Relationships in Combinatorial Data Sets: Identification of Activity Switches , 2013, J. Chem. Inf. Model..

[27]  Dimitris K. Agrafiotis,et al.  Efficient Substructure Searching of Large Chemical Libraries: The ABCD Chemical Cartridge , 2011, J. Chem. Inf. Model..

[28]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[29]  O. Méndez-Lucio,et al.  Synthesis and antiprotozoal activity of novel 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives. , 2013, Bioorganic & medicinal chemistry letters.

[30]  José L Medina-Franco,et al.  Activity Cliffs: Facts or Artifacts? , 2013, Chemical biology & drug design.

[31]  Kathrin Heikamp,et al.  Prediction of Activity Cliffs Using Support Vector Machines , 2012, J. Chem. Inf. Model..