On the asymptotics of occurrence times of rare events for stochastic spin systems

We consider translation-invariant attractive spin systems. LetTΛ,xv be the first time that the average spin inside the hypercube Λ reaches the valuex when the process is started from an invariant measure ν with density smaller thanx. We obtain sufficient conditions for (1) ¦Λ¦−1 logTΛ,xv →ϕ(x) in distribution as ¦Λ¦ → ∞, and ¦Λ¦−1 logTΛ,xv →ϕ(x) as ¦Λ¦ → ∞, where ϕ(x):= −limΛ¦Λ¦−1 log ν{(average spin inside Λ) ⩾ x. And (2)TΛ,xv/ETΛ,xv converges to a unit mean exponential random variable as ¦Λ¦ → ∞. Both (1) and (2) are proven under some type of rapid convergence to equilibrium. (1) is also proven without extra conditions for Ising models with ferromagnetic pair interactions evolving according to an attractive reversible dynamics; in this case ϕ is a thermodynamic function. We discuss also the case of finite systems with boundary conditions and what can be said about the state of the system at the timeTΛ,xv.

[1]  Antonio Galves,et al.  Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .

[2]  D. Aldous Probability Approximations via the Poisson Clumping Heuristic , 1988 .

[3]  J. Langer,et al.  Relaxation Times for Metastable States in the Mean-Field Model of a Ferromagnet , 1966 .

[4]  Roberto H. Schonmann,et al.  Metastability for the contact process , 1985 .

[5]  M. V. Day,et al.  On the exponential exit law in the small parameter exit problem , 1983 .

[6]  Charles M. Newman,et al.  The Metastable Behavior of Infrequently Observed, Weakly Random, One-Dimensional Diffusion Processes , 1985 .

[7]  Richard Bellman,et al.  Recurrence times for the Ehrenfest model. , 1951 .

[8]  D. Aldous Markov chains with almost exponential hitting times , 1982 .

[9]  Roberto H. Schonmann,et al.  Pseudo-free energies and large deviations for non gibbsian FKG measures , 1988 .

[10]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[11]  J. Keilson Markov Chain Models--Rarity And Exponentiality , 1979 .

[12]  Antonio Galves,et al.  Metastability for a Class of Dynamical Systems Subject to Small Random Perturbations , 1987 .

[13]  M. Williams Asymptotic Exit Time Distributions , 1982 .

[14]  Lawrence Gray,et al.  Duality for General Attractive Spin Systems with Applications in One Dimension , 1986 .

[15]  T. E. Harris First passage and recurrence distributions , 1952 .

[16]  J. Doob Stochastic processes , 1953 .

[17]  Rick Durrett,et al.  On the Growth of One Dimensional Contact Processes , 1980 .

[18]  Steven Orey,et al.  Large Deviations for the Empirical Field of a Gibbs Measure , 1988 .

[19]  R. Fortet,et al.  Grandes déviations pour des champs de Gibbs sur Zd , 1986 .

[20]  R. Holley,et al.  Rapid Convergence to Equilibrium in One Dimensional Stochastic Ising Models , 1985 .

[21]  T. Liggett Interacting Particle Systems , 1985 .

[22]  R. Cogburn On the Distribution of First Passage and Return Times for Small Sets , 1985 .

[23]  Stefano Olla,et al.  Large deviations for Gibbs random fields , 1988 .

[24]  R. K. Pathria,et al.  THEORY OF PHASE TRANSITIONS , 1972 .

[25]  R. Holley,et al.  Rapid Convergence to Equilibrium of Stochastic Ising Models in the Dobrushin Shlosman Regime , 1987 .

[26]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[27]  R. Durrett,et al.  The Contact Process on a Finite Set. II , 1988 .

[28]  D. Korolyuk,et al.  Entry Times into Asymptotically Receding Domains for Ergodic Markov Chains , 1984 .